acs.cgd.8b00853.pdf (1.66 MB)

The role of residence time distribution in the continuous steady-state mixed suspension mixed product removal crystallization of glycine

Download (1.66 MB)
journal contribution
posted on 19.11.2018 by Iyke Onyemelukwe, Anna R. Parsons, Helen P. Wheatcroft, Amy Robertson, Zoltan Nagy, Chris Rielly
In this work, a vacuum-driven intermittent transfer technique has been implemented to solve transfer line blockage issues and facilitate steady-state cooling crystallization studies of α-glycine in a single- and 2-stage MSMPR crystallizer. Experimental residence time distribution (RTD) analysis of the stirred-tank MSMPR cascade is performed using an imperfect pulse method of the axial dispersion model to benchmark the mixing performance against that of tubular crystallizers, and determine the influence of RTD on steady-state size distribution of α-glycine product. Process analytical technology (PAT) is used to monitor and understand crystallization process dynamics, and the effect of MSMPR operating temperature, mean residence time, and number of MSMPR stages on mean particle size, crystal size distribution, and yield is studied. Results show the significance of nucleation-growth mechanisms alongside RTD in determining steady-state size distribution; and the need for optimum control of supersaturation to reap the benefit of improved RTDs provided by multistage MSMPR crystallizers.

Funding

This work was supported by the EPSRC (EP/I033459/1) Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallization (CMAC) and the Doctoral Training Centre in Continuous Manufacturing and Crystallization (EP/K503289/1).

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

Crystal Growth & Design

Volume

19

Issue

1

Pages

66 - 80

Citation

ONYEMELUKWE, I. ... et al, 2018. The role of residence time distribution in the continuous steady-state mixed suspension mixed product removal crystallization of glycine. Crystal Growth & Design, 19 (1), pp.66-80.

Publisher

© American Chemical Society

Version

AM (Accepted Manuscript)

Publisher statement

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Crystal Growth & Design, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.cgd.8b00853.

Acceptance date

15/11/2018

Publication date

2018-11-15

ISSN

1528-7483

eISSN

1528-7505

Language

en

Exports