The role of self-assembled monolayers in the surface modification and interfacial contact of copper fillers in electrically conductive adhesives
Printing of electrical circuits and interconnects using isotropic conductive adhesives (ICAs) is of great interest due to their low-temperature processing and compatibility with substrates for applications in sensors, healthcare, and flexible devices. As a lower cost alternative to silver (Ag), copper (Cu)-filled ICAs are desirable but limited by the formation of high-resistivity Cu surface oxides. To overcome this limitation, self-assembled monolayers (SAMs) of octadecanethiol (ODT) have been demonstrated to reduce the oxidation of micrometer-scale Cu powder particles for use in ICAs. However, the deposition and function of the SAM require further investigation, as described in this paper. As part of this work, the stages of the SAM deposition process, which included etching with hydrochloric acid to remove pre-existing oxides, were studied using X-ray photoelectron spectroscopy (XPS), which showed low levels of subsequent Cu oxidation when ODT coated. The treated Cu powders were combined with one- or two-part epoxy resins to make Cu-ICAs, and the effect of the Cu surface condition and weight loading on electrical conductivity was examined. When thermally cured in an inert argon atmosphere, ICAs filled with Cu protected by ODT achieved electrical conductivity up to 20 × 105 S·m–1, comparable to Ag-ICAs, and were used to make a functional circuit. To understand the function of the SAM in these Cu-ICAs, scanning and transmission electron microscopy were used to examine the internal micro- and nano-structures along with the elemental distribution at the interfaces within sections taken from cured samples. Sulfur (S), indicative of the ODT, was still detected at the internal polymer–metal interface after curing, and particle-to-particle contacts were also examined. XPS also identified S on the surface of cured Cu-ICAs even after thermal treatment. Based on the observations, electrical contact and conduction mechanisms for these Cu-filled ICAs are proposed and discussed.
History
School
- Aeronautical, Automotive, Chemical and Materials Engineering
- Mechanical, Electrical and Manufacturing Engineering
Department
- Materials
Published in
ACS Applied Materials & InterfacesVolume
16Issue
1Pages
1846 - 1860Publisher
American Chemical SocietyVersion
- VoR (Version of Record)
Rights holder
© The AuthorsPublisher statement
This is an Open Access Article. It is published by the American Chemical Society under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/Acceptance date
2023-11-20Publication date
2023-12-19Copyright date
2023ISSN
1944-8244eISSN
1944-8252Publisher version
Language
- en