The role of the spatial network in urban disaster risk variations: Reimagining the notion of spatial vulnerability at the urban scale
The notion of “spatial vulnerability” is present in most disaster studies with a strong geographical connotation and accordingly is adopted at all scales, including the urban. While enabling mapping and visualizing risk patterns at macroscales, this geocentric foundation fails to capture disaster risk dynamics associated with the urban spatial network—an element that plays a significant role in the everyday and emergency functioning of cities, enabling users’ movement and interaction. Yet, urban vulnerability assessment overlooks this aspect and thus leaves urban disaster risk mechanisms partially unexplored. This study investigated the role of the network of urban public open spaces (UPOS) in the creation and progression of urban disaster risk in earthquake-prone settlements. Through a multimethod approach that integrates quantitative and qualitative methods and explores spatial configuration, planning policies, and practices of use of UPOS in everyday and emergency scenarios, our study demonstrated that UPOS configuration plays an active role in urban disaster risk. Urban public open spaces impact risk by influencing the exposure of pedestrians and their capacity for self-protection. The study further reconceptualized spatial vulnerability at the urban scale, as the fraction of vulnerability associated to the spatial network, highlighting the interplay of planning policies and spatial practices in its production and progression. Our findings make the notion of spatial vulnerability less ambiguous at the urban scale, by viewing the variable as an imbalance in capacities and exposure that generates spatially unsafe conditions. This refined conceptualization of spatial vulnerability becomes a lens for a more granular approach to urban disaster risk reduction and city planning by identifying and integrating sociospatial considerations.
History
School
- Architecture, Building and Civil Engineering
Published in
International Journal of Disaster Risk ScienceVolume
15Issue
3Pages
303–316Publisher
SpringerOpenVersion
- VoR (Version of Record)
Rights holder
© The Author(s)Publisher statement
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Acceptance date
2024-03-30Publication date
2024-04-16Copyright date
2024ISSN
2095-0055eISSN
2192-6395Publisher version
Language
- en