posted on 2019-02-25, 14:42authored byKe Xu, Alexander J. Gabourie, Arsalan Hashemi, Zheyong Fan, Ning Wei, Amir Barati Farimani, Hannu-Pekka Komsa, Arkady V. Krasheninnikov, Eric Pop, Tapio Ala-NissilaTapio Ala-Nissila
Thermal properties of molybdenum disulfide (MoS2) have recently attracted attention related to fundamentals
of heat propagation in strongly anisotropic materials, and in the context of potential applications to optoelectronics and thermoelectrics. Multiple empirical potentials have been developed for classical molecular dynamics
(MD) simulations of this material, but it has been unclear which provides the most realistic results. Here, we
calculate lattice thermal conductivity of single- and multilayer pristine MoS2 by employing three different
thermal transport MD methods: equilibrium, nonequilibrium, and homogeneous nonequilibrium ones. We mainly
use the Graphics Processing Units Molecular Dynamics code for numerical calculations, and the Large-scale
Atomic/Molecular Massively Parallel Simulator code for crosschecks. Using different methods and computer
codes allows us to verify the consistency of our results and facilitate comparisons with previous studies, where
different schemes have been adopted. Our results using variants of the Stillinger-Weber potential are at odds
with some previous ones and we analyze the possible origins of the discrepancies in detail. We show that, among
the potentials considered here, the reactive empirical bond order (REBO) potential gives the most reasonable
predictions of thermal transport properties as compared to experimental data. With the REBO potential, we
further find that isotope scattering has only a small effect on thermal conduction in MoS2 and the in-plane thermal
conductivity decreases with increasing layer number and saturates beyond about three layers. We identify the
REBO potential as a transferable empirical potential for MD simulations of MoS2 which can be used to study
thermal transport properties in more complicated situations such as in systems containing defects or engineered
nanoscale features. This work establishes a firm foundation for understanding heat transport properties of MoS2
using MD simulations.
Funding
This work was supported in part by the National Natural
Science Foundation of China (Grants No. 11404033 and No.
11502217) and in part by the Academy of Finland (Projects
No. 286279 and No. 311058) and its Centre of Excellence program QTF (Project No. 312298).
History
School
Science
Department
Mathematical Sciences
Published in
Physical Review B
Volume
99
Issue
5
Citation
XU, K. ... et al., 2019. Thermal transport in MoS2 from molecular dynamics using different empirical potentials. Physical Review B, 99: 054303.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Acceptance date
2019-01-01
Publication date
2019-02-11
Notes
This paper was published in the journal Physical Review B and the definitive published version is available at https://doi.org/10.1103/physrevb.99.054303