Ala_Nissila_PhysRevB.99.054303.pdf (2.85 MB)

Thermal transport in MoS2 from molecular dynamics using different empirical potentials

Download (2.85 MB)
journal contribution
posted on 25.02.2019, 14:42 by Ke Xu, Alexander J. Gabourie, Arsalan Hashemi, Zheyong Fan, Ning Wei, Amir Barati Farimani, Hannu-Pekka Komsa, Arkady V. Krasheninnikov, Eric Pop, Tapio Ala-Nissila
Thermal properties of molybdenum disulfide (MoS2) have recently attracted attention related to fundamentals of heat propagation in strongly anisotropic materials, and in the context of potential applications to optoelectronics and thermoelectrics. Multiple empirical potentials have been developed for classical molecular dynamics (MD) simulations of this material, but it has been unclear which provides the most realistic results. Here, we calculate lattice thermal conductivity of single- and multilayer pristine MoS2 by employing three different thermal transport MD methods: equilibrium, nonequilibrium, and homogeneous nonequilibrium ones. We mainly use the Graphics Processing Units Molecular Dynamics code for numerical calculations, and the Large-scale Atomic/Molecular Massively Parallel Simulator code for crosschecks. Using different methods and computer codes allows us to verify the consistency of our results and facilitate comparisons with previous studies, where different schemes have been adopted. Our results using variants of the Stillinger-Weber potential are at odds with some previous ones and we analyze the possible origins of the discrepancies in detail. We show that, among the potentials considered here, the reactive empirical bond order (REBO) potential gives the most reasonable predictions of thermal transport properties as compared to experimental data. With the REBO potential, we further find that isotope scattering has only a small effect on thermal conduction in MoS2 and the in-plane thermal conductivity decreases with increasing layer number and saturates beyond about three layers. We identify the REBO potential as a transferable empirical potential for MD simulations of MoS2 which can be used to study thermal transport properties in more complicated situations such as in systems containing defects or engineered nanoscale features. This work establishes a firm foundation for understanding heat transport properties of MoS2 using MD simulations.

Funding

This work was supported in part by the National Natural Science Foundation of China (Grants No. 11404033 and No. 11502217) and in part by the Academy of Finland (Projects No. 286279 and No. 311058) and its Centre of Excellence program QTF (Project No. 312298).

History

School

  • Science

Department

  • Mathematical Sciences

Published in

Physical Review B

Volume

99

Issue

5

Citation

XU, K. ... et al., 2019. Thermal transport in MoS2 from molecular dynamics using different empirical potentials. Physical Review B, 99: 054303.

Publisher

© American Physical Society (APS)

Version

VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

01/01/2019

Publication date

2019-02-11

Notes

This paper was published in the journal Physical Review B and the definitive published version is available at https://doi.org/10.1103/physrevb.99.054303

ISSN

2469-9950

eISSN

2469-9969

Language

en

Exports

Loughborough Publications

Keywords

Exports