File(s) under permanent embargo
Reason: This item is currently closed access.
Thermoplasmonic response of semiconductor nanoparticles: A comparison with metals
journal contribution
posted on 2018-11-06, 14:39 authored by Vaibhav Thakore, Janika Tang, Kevin Conley, Tapio Ala-NissilaTapio Ala-Nissila, Mikko KarttunenA number of applications in nanoplasmonics utilize noble metals, gold (Au) and silver (Ag), as the materials of choice. However, these materials suffer from problems of poor thermal and chemical stability with significant dissipative losses under high-temperature conditions. In this regard,
semiconductor nanoparticles have attracted attention with their promising
characteristics of highly tunable plasmonic resonances, low ohmic losses, and
greater thermochemical stability. Here, the size-dependent thermoplasmonic
properties of semiconducting silicon and gallium arsenide nanoparticles are
investigated to compare them with Au nanoparticles using Mie theory. To this
end, experimentally estimated models of dielectric permittivity are employed.
Among the various permittivity models for Au, the Drude–Lorentz (DL) and the Drude and critical points (DCP) models are further compared. Results show a redshift in the scattering and absorption resonances for the DL model while the DCP model presents a blueshift. A massive Drude broadening
contributes strongly to the damping of resonances in Au nanoparticles at
elevated temperatures. In contrast, the semiconductor nanoparticles do not
exhibit significant deterioration in their scattering and absorption resonances
at high temperatures. In combination with low dissipative damping, this makes the semiconductor nanoparticles better suited for high-temperature applications in nanoplasmonics wherein the noble metals suffer from excessive heating.
Funding
The authors gratefully acknowledge funding and support from the Academy of Finland, COMP Center of Excellence Programs (2015-2017), Grant No. 284621; QTF Center of Excellence Program, Grant No. 312298; RADDESS Consortium Grant; the Aalto Energy Efficiency Research Program EXPECTS; the Aalto Science-IT project; the Discovery Grants and Canada Research Chairs Program of the Natural Sciences and Engineering Research Council (NSERC) of Canada; and Compute Canada (www.computecanada.ca).
History
School
- Science
Department
- Mathematical Sciences