PhysRevResearch.2.022002.pdf (1.06 MB)
Download fileTime crystallinity in dissipative Floquet systems
journal contribution
posted on 2021-03-29, 13:25 authored by Achilleas LazaridesAchilleas Lazarides, Sthitadhi Roy, Francesco Piazza, Roderich MoessnerWe investigate the conditions under which periodically driven quantum systems subject to dissipation exhibit
a stable subharmonic response. Noting that coupling to a bath introduces not only cooling but also noise, we
point out that a system subject to the latter for the entire cycle tends to lose coherence of the subharmonic
oscillations, and thereby the long-time temporal symmetry breaking. We provide an example of a shortranged two-dimensional system which does not suffer from this and therefore displays persistent subharmonic
oscillations stabilized by the dissipation. We also show that this is fundamentally different from the disordered
discrete time crystal previously found in closed systems, both conceptually and in its phenomenology. The
framework we develop here clarifies how fully connected models constitute a special case where subharmonic
oscillations are stable in the thermodynamic limit.
Funding
Quantum Matter in and out of Equilibrium
Engineering and Physical Sciences Research Council
Find out more...Defense Advanced Research Projects Agency (DARPA) via the DRINQS program
History
School
- Science
Department
- Mathematical Sciences