We address the problem of classification of integrable differential-difference equations in 2+1 dimensions with one/two discrete variables. Our approach is based on the method of hydrodynamic reductions and its generalisation to dispersive equations as proposed in [10,11]. We obtain a number of classification results of scalar integrable equations including that of the intermediate long wave and Toda type
Funding
The research of EVF was partially supported by the European Research Council Advanced Grant FroM-PDE.
History
School
Science
Department
Mathematical Sciences
Published in
Journal of Physics A: Math.Theor.
Citation
FERAPONTOV, E.V., NOVIKOU, V.S. and ROUSTEMOGLOU, I., 2013. Towards the classification of integrable differential-difference equations in 2 + 1 dimensions. Journal of Physics A: Mathematical and Theoretical, 46, 24520.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
2013
Notes
This paper was accepted for publication in the journal Journal of Physics A: Mathematical and Theoretical and the definitive published version is available at http://dx.doi.org/10.1088/1751-8113/46/24/245207