Training-specific functional, neural, and hypertrophic adaptations to explosive-vs. sustained-contraction strength training
journal contribution
posted on 2017-03-23, 11:23 authored by Tom BalshawTom Balshaw, Garry J. Massey, Tom Maden-Wilkinson, Neale A. Tillin, Jonathan FollandJonathan FollandCopyright © 2016 the American Physiological Society.Training specificity is considered important for strength training, although the functional and underpinning physiological adaptations to different types of training, including brief explosive contractions, are poorly understood. This study compared the effects of 12 wk of explosive-contraction (ECT, n = 13) vs. sustained-contraction (SCT, n = 16) strength training vs. control (n = 14) on the functional, neural, hypertrophic, and intrinsic contractile characteristics of healthy young men. Training involved 40 isometric knee extension repetitions (3 times/wk): contracting as fast and hard as possible for ∼1 s (ECT) or gradually increasing to 75% of maximum voluntary torque (MVT) before holding for 3 s (SCT). Torque and electromyography during maximum and explosive contractions, torque during evoked octet contractions, and total quadriceps muscle volume (QUADSVOL) were quantified pre and post training. MVT increased more after SCT than ECT [23 vs. 17%; effect size (ES) = 0.69], with similar increases in neural drive, but greater QUADSVOL changes after SCT (8.1 vs. 2.6%; ES = 0.74). ECT improved explosive torque at all time points (17-34%; 0.54 ≤ ES ≤ 0.76) because of increased neural drive (17-28%), whereas only late-phase explosive torque (150 ms, 12%; ES = 1.48) and corresponding neural drive (18%) increased after SCT. Changes in evoked torque indicated slowing of the contractile properties of the muscletendon unit after both training interventions. These results showed training-specific functional changes that appeared to be due to distinct neural and hypertrophic adaptations. ECT produced a wider range of functional adaptations than SCT, and given the lesser demands of ECT, this type of training provides a highly efficient means of increasing function.
Funding
This study was supported financially by the Arthritis Research UK Centre for Sport, Exercise, and Osteoarthritis (Grant reference 20194)
History
School
- Sport, Exercise and Health Sciences
Published in
Journal of Applied PhysiologyVolume
120Issue
11Pages
1364 - 1373Citation
BALSHAW, T.G. ...et al., 2016. Training-specific functional, neural, and hypertrophic adaptations to explosive-vs. sustained-contraction strength training. Journal of Applied Physiology, 120(11), pp. 1364-1373.Publisher
© the American Physiological SocietyVersion
- AM (Accepted Manuscript)
Publisher statement
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/Acceptance date
2016-04-05Publication date
2016Notes
This paper was accepted for publication in the journal Journal of Applied Physiology and the definitive published version is available at http://dx.doi.org/10.1152/japplphysiol.00091.2016ISSN
8750-7587eISSN
1522-1601Publisher version
Language
- en
Administrator link
Usage metrics
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC