Loughborough University
Browse

File(s) under permanent embargo

Reason: Publisher requirement. Embargo will be lifted after publication.

Ultra-fast deraining plugin for vision-based perception of autonomous driving

Rain deviates the distribution of rainy images and the clean, rain-free data typically used during perception model training, this kind of out-of-distribution (OOD) issue making it difficult for models to generalize effectively in rainy scenarios, leading the performance degrade of autonomous perception systems in visual tasks such as lane detection and depth estimation, posing serious safety risks. To address this issue, we propose the Ultra-Fast Deraining Plugin (UFDP), a model-efficient deraining solution specifically designed to realign the distribution of rainy images and their rain-free counterparts. UFDP not only effectively removes rain from images but also seamlessly integrates into existing visual perception models, significantly enhancing their robustness and stability under rainy conditions. Through a detailed analysis of single-image color histograms and dataset-level distribution, we demonstrate how UFDP improves the similarity between rainy and non-rainy image distributions. Additionally, qualitative and quantitative results highlight UFDP's superiority over state-of-the-art (SOTA) methods, showing a 5.4% improvement in SSIM and 8.1% in PSNR. UFDP also excels in terms of efficiency, achieving 7 times higher FPS than the slowest method, reducing FLOPs by 53.7 times, and using 28.8 times fewer MACs, with 6.2 times fewer parameters. This makes UFDP an ideal solution for ensuring reliable performance in autonomous driving visual perception systems, particularly in challenging rainy environments.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

IEEE Transactions on Intelligent Transportation Systems

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Version

  • AM (Accepted Manuscript)

Publisher statement

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Acceptance date

2024-11-19

ISSN

1524-9050

eISSN

1558-0016

Language

  • en

Depositor

Dr Jingjing Jiang. Deposit date: 21 November 2024