Loughborough University

File(s) under permanent embargo

Reason: This item is currently closed access.

Unsteady flow structures in radial swirler fed fuel injectors

journal contribution
posted on 2010-04-27, 10:51 authored by Kris Midgley, Adrian SpencerAdrian Spencer, Jim McGuirk
Many fuel injector geometries proposed for lean-premixed combustion systems involve the use of radial swirlers. At the high swirl numbers needed for flame stabilization, several complex unsteady fluid mechanical phenomena such as vortex breakdown and recirculation zone precession are possible. If these unsteady aerodynamic features are strongly periodic, unwanted combustion induced oscillation may result. The present paper reports on an isothermal experimental study of a radial swirler fed fuel injector originally designed by Turbomeca, and examines the dynamical behavior of the unsteady aerodynamic flow structures observed. Particle Image Velocimetry (PIV) is used to capture the instantaneous appearance of vortex structures both internal to the fuel injector, and externally in the main flame-stabilizing recirculation zone. Multiple vortex structures are observed. Vector field analysis is used to identify specific flow structures and perform both standard and conditional time averaging to reveal the modal characteristics of the structures. This allows analysis of the origin of high turbulence regions in the flow and links between internal fuel injector vortex breakdown and external unsteady flow behavior. The data provide a challenging test case for Large Eddy Simulation methods being developed for combustion system simulation.



  • Aeronautical, Automotive, Chemical and Materials Engineering


  • Aeronautical and Automotive Engineering


MIDGLEY, K., SPENCER, A. and MCGUIRK, J.J., 2005. Unsteady flow structures in radial swirler fed fuel injectors. Journal of Engineering for Gas Turbines and Power, 127 (4), pp. 755-764




  • NA (Not Applicable or Unknown)

Publication date



This item is closed access. It is an article from the serial, Journal of Engineering for Gas Turbines and Power [© ASME ]. For more information on how to obtain this article please visit the ASME Digital Library, http://www.asmedl.org/ .




  • en