Loughborough University
Browse

Validating a traffic conflict prediction technique for motorways using a simulation approach

Download (5.54 MB)
journal contribution
posted on 2022-01-17, 12:16 authored by Nicolette Formosa, Mohammed Quddus, Alkis Papadoulis, Andrew TimmisAndrew Timmis
With the ever-increasing advancements in the technology of driver assistant systems, there is a need for a comprehensive way to identify traffic conflicts to avoid collisions. Although significant research efforts have been devoted to traffic conflict techniques applied for junctions, there is dearth of research on these methods for motorways. This paper presents the validation of a traffic conflict prediction algorithm applied to a motorway scenario in a simulated environment. An automatic video analysis system was developed to identify lane change and rear-end conflicts as ground truth. Using these conflicts, the prediction ability of the traffic conflict technique was validated in an integrated simulation framework. This framework consisted of a sub-microscopic simulator, which provided an appropriate testbed to accurately simulate the components of an intelligent vehicle, and a microscopic traffic simulator able to generate the surrounding traffic. Results from this framework show that for a 10% false alarm rate, approximately 80% and 73% of rear-end and lane change conflicts were accurately predicted, respectively. Despite the fact that the algorithm was not trained using the virtual data, the sensitivity was high. This highlights the transferability of the algorithm to similar road networks, providing a benchmark for the identification of traffic conflict and a relevant step for developing safety management strategies for autonomous vehicles.

History

School

  • Architecture, Building and Civil Engineering

Published in

Sensors

Volume

22

Issue

2

Publisher

MDPI AG

Version

  • VoR (Version of Record)

Rights holder

© The Authors

Publisher statement

This is an Open Access Article. It is published by MDPI under the Creative Commons Attribution 4.0 International Licence (CC BY 4.0). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/

Acceptance date

2022-01-07

Publication date

2022-01-12

Copyright date

2022

eISSN

1424-8220

Language

  • en

Depositor

Dr Andrew Timmis. Deposit date: 16 January 2022

Article number

566

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC