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ABSTRACT

Previous research into structural vibration transmission paths has shown
that it is possible to predict vibrational power transmission in simple beam and
plate structures. However, in many practical structures transmission paths are
composed of more complex curved elements; therefore, there is a need to extend
vibrational power transmission analyses to this class of structure. In this paper,
expressions are derived which describe the vibrational power transmission due
to flexural, extensional and shear types of travelling wave in a curved beam
which has a constant radius of curvature. By assuming sinusoidal wave motion,
expressions are developed which relate the time-averaged power transmission to
the travelling wave amplitudes. The results of numerical studies are presented
which show the effects upon power transmission along a curved beam of: (i) the
degree of curvature; and (ii) various simplifying assumptions made concerning

beam deformation.



1. INTRODUCTION

Unwanted vibration in ships, aircraft and buildings is often caused by the
operation of machinery installed within the structure. The bestmﬁtt;ato reduce
the unwanted vibration is to modify the source and isolate it from the
supporting structure. However, if the problem persists the vibration
transmission characteristics through the structure from the source connection
points to the area of unacceptable vibration levels must be examined, and
appropriate vibration control procedures undertaken. For example, Figure 1
shows a typical machinery installation in a ship which consists of a machine
mounted on a suspension system which is attached to the main structure of the
vessel. In addition to the primary connection at the machinery seating, there
will also be structural connections through the pipework, control linkages and
exhaust system and an acoustic connection through the air or surrounding
medium. Each of these connections provides a flanking path for the vibrational
,-ast_..,u.;g MBSOy

energy. Thus Ee-:m:iﬁi:ﬁ&iset_the vibration transmission and ultimate noise
radiation from a machine will involve the investigation of several parallel
transmission paths. Vibrational power transmission analysis techniques allow
the direction of propagation of vibrational energy to be determined, and a
magnitude to be assigned to each path.
' e Ko

AIQ characterise acoustic transmission paths, acoustic intensity measurement
methods have already been developed, and hence are not considered in this
paper. Previous research into structural transmission paths has shown that it is
possible to predict vibrational power transmission in simple beam and plate
structures. More recently transmission through pipes with bends, branches and
discontinuities has been studied [1], which has led to useful design rules
concerning the position and size of pipe supports for minimum power
transmission. However, in many practical structures transmission paths are
composed of more complex curved elements. Therefore, there is a need to
extend power transmission analysis to this class of structure.

Wave motion in a curved beam with constant radius of curvature has been

considered by Love [2] who assumed that the centre-line remains unextended

during flexural motion, whilst flexural behaviour is ignored when considering

extensional motion. Using these assumptions the vibrational behaviour of



[ Y

~W

complete or incomplete rings has been considered by many researchers who are
interested in the low frequency behaviour of arches and reinforcing rings [3]. In
reference [2] Love also presented equations for thin shells which include the
effects of extension of the mid-surface during bending motion. Soedel [4] reduced
these to equations applicable to a curved beam of constant radius of curvature. In
an alternative approach)Graff [5] derived these equations from first principles and
also constructed frequency-versus-wave number and wave speed-versus-wave
number graphs. Philipson [6] derived a set of equations of motion which
included extension of the central line in the flexural wave motion, and also
rotary inertia effects. In a development analogous to that of Timoshenko for
straight beams, Morley [7] introduced a correction for radial shear when
considering the vibration of curved beams. Graff later presented frequency-
versus-wave number and wave speed-versus-wave number data for wave
motion in a curved beam, when higher order effects are included [8]. More
recently Walsh and White [9] presented formulae for the point and cross
mobilities of ‘semi-infinite’ curved beams based upon theoretical and
experimental studies.

In this paper, expressions for vibrational power transmission in a curved
beam are derived from first principles. In the next Section two sets of governing
equations for wave motion in a curved beam are presented, both of which
include coupled extensional-flexural motion. The first set is based upon a
reduction of Love’s thin shell equations mentioned above. The second set is
based upon a reduction of Fliigge’s thin shell equations [10]. InSection three, the
expressions for stresses and displacements presented in Section two are used to
derive formulae for vibrational power transmission in terms of centre-line
displacements. By assuming sinusoidal wave motion, expressions are developed
which relate the time-averaged power transmission to the extensional and
flexural travelling wave amplitudes. In $ection four, a correction for rotary
intertia is introduced by allowing the elements of the beam to undergo rigid body
rotation in addition to lateral translation. Later in the %ection, it is assumed the
elements of the beam are also subjected to radial shearing stresses, and hence
undergo shear deformation. The results of numerical studies of these

expressions are presented which show the effects upon wave motion and power



transmission of: (i) the degree of curvature; and (ii) the various simplifying

assumptions made concerning the beam deformation.

2. WAVE MOTION IN CURVED BEAMS

2.1 INTRODUCTION

In this Section the equations of motion for a curved beam are presented
where the centre-line of the beam forms a plane of constant radius of curvature.
The cross-section of the beam is uniform and symmetrical about a plane and it is
also assumed that there is no motion perpendicular to the plane. It is also
assumed that the beam material is linearly elastic, homogeneous, isotropic and
continuous. The results of two different theories are presented in this Section,
both of which can be classed 'simple bending’ or 'thin shell' theories, and which
include extension of the centre-line during flexural motion. One set of
expressions can be obtained by reduction of Love's thin shell equations [4, 10] and
converting from generalised curvilinear co-ordinates to polar co-ordinates;
alternatively, the expressions can be derived from first principles [5]. A second
set of expressions can be obtained by reduction of Fliigge's thin shell equations
[10]. Of the many different shell theories these two were chosen: (i) because they
are two of the most widely used sets of equations, and (ii) because expressions for
vibrational power transmission in circular cylindrical shells [11] and arbitrary
shaped shells [12] have already been published based upon Fliigge's and Love's

equations, respectively.

2.2 THE GOVERNING EQUATIONS

Consider a portion of a curved beam, as shown in Figure 2. The
~ circumferential co-ordinate measured around the centre-line is s, while the
outward pointing normal co-ordinate from the centre-line is z, and the general
radial co-ordinate is r. A complete list of notation is given in Appendix B. The
centre-line is defined as the locus of centroids of each cross-sectional element.

The tangential and radial displacements of a material point are U (r, s, t) and W



(r, s, t), respectively. For small displacements of thin beams the following
assumptions, known as "Love's first approximation” in classical shell theory, can
be made [10]:

(i) the thickness of the beam in the plane of curvature is small compared with
other dimensions, for example, the radius of curvature;

(ii) strains and displacements are sufficiently small so that second- and higher-
order magnitude terms in the strain-displacement relationships may be
neglected in comparison with first-order terms;

(iii) the transverse normal strain is small compared to the other normal strains
and may be neglected;

(iv) normals to the undeformed middle-surface remain straight and normal to
the deformed middle-surface and suffer no extension.

The fourth assumption is known as Kirchoff's hypothesis and imposes the
following linear relationships between the displacements of a material point and

components of displacement at the undeformed centre-line:

U@,s,t)=uR, s, t)y+z¢ (s, 1), (1a)
W (s, t)=w (R, s, t), (1b)

where u and w are the components of displacement at the centre-line in the
tangential and radial directions, respectively, ¢ is the rotation of the normal to

the centre-line during deformation:

u ow

q) = -ﬁ - os ’ (2)
( angle of )(rotational displacement)

curvature of straignt beam

and W is independent of z and is completely defined by the centre-line
component w. Substituting equations (la) and (1b) into the strain-displacement
equations of three-dimensional *elasticity theory gives the following relation for

total circumferential strain:
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where g is the in-plane (extensional) strain and Bg is the bending strain

(mid-surface change in curvature). Equation (3) is the strain-displacement

equation of Fliigge [10]. If the term %— in equation (3) is neglected with respect to

unity in the denominator, the strain-displacement equation of Love is obtained

[10]. Since the radial stress component, &, is assumed negligible, the transverse
strain, €, is zero, and as a consequence of Kirchoff's hypothesis the transverse
shear strain, v, is zero.

Assuming the material to be linearly elastic, the circumferential and transverse
stress-strain relationships are given by Hooke's Law. But from Kirchoff's
hypothesis the shear strain, g, is zero, thus the shear stress, o, is zero.
However, these stresses cannot be zero since they are related to the transverse

shearing forces needed for equilibrium, which is an unavoidable inconsistency in
g y

simple bending theory. From Hooke's Law, the radial stress is given by o, = v o,
where v is Poisson's ratio, but Love's third assumption is that ¢, is zero, which is
another contradiction in the shell theory considered here. The strain-
displacement éxpressions and stress-strain equations of the Love and Fliigge
based theories are listed in Table 1.

Assuming the material to be homogeneous and isotropic, the Young's
modulus, E, shear modulus, G, and Poisson’s ratio, v, can be treated as constants.
Thus, by integrating the stresses over the beam thickness, force and moment
resultants are obtained. Although the transverse shear stress, o, is zero, a non-
vanishing shear resultant, Q, is defined as the integral across the thickness of the
transverse shear stress. The circumferential force, N, bending moment, M, and
shear force, Q, of the Love and Fliigge based theories are listed in Table 2. Figure 3
shows the sign convention of force resultants on an elemental slice of a curved

beam.



=,
’hl

&)

c\\af

7 -~

O _VUV‘/ LXL\/{/’
Equations of motion for a curved beam are presented in [5]. These equations are
derived in terms of the radian parameter 6. By applying the substitutions, s = R6

of 1 of

and 5= = R 39 equations of motion are obtained which are expressed in terms of

the circumferential length, s. Alternatively the equations of motion can be
obtained from Love[tbased equations for a cylindrical shell [10].

Flﬁggeibased equations of motion for a curved beam also assume the
simplifying assumptions of "Love's first approximation”. However, because of
the stage in the derivation at which these approximations are introduced these
equations also implicitly assume that there is a shift of neutral axis location due
to beam curvature. For this paper, the Fliigge based equations of motion were
obtained by reduction of the equations of motion for a circular cylindrical shell
presented in [9]. The LoveZand Fliigge/Lbased equations of motion are listed in
Table 3.

An harmonic solution of the equations of motion can be obtained by
assuming that extensional and flexural sinusoidal waves propagate in the

circumferential direction and can be represented respectively by:
w (1) = A @It - ks)], (4
u () = B (&g Dot - k)], (5)

where A and B are the complex wave amplitudes. Substituting these harmonic

-

wave expressions into the Love[and Fliigge/ based equations of motion gives the

harmonic form of the equations of motion which are listed in Table 4.

2.3 COMPUTER SIMULATION
For a given real wavenumber, k, the harmonic equations of motion can be

solved to find the corresponding radian frequency, ®, and complex wave

~

B - -~
amplitude ratio |—[. Both the LoveLand FliiggeLbased sets of equations were
A
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solved using computer programs written in the matrix analysis language
MATLAB. The simulated beam was chosen to have the material properties of
typical mild steel strip beams used for laboratory experiments. The material

properties were:

Young's modulus E = 207.0 x 109 (N/m?2),
Shear modulus G = 79.6x10° (N/m?2),
Density p =7850.0 (kg/m3) .

The beam thickness, h, was set at 10 mm and thus, approximately at the same
thickness (6-7 mm) as typical experimental beams. For ease of computation the
beam width, b, was set to unity (i.e. 1.0 m) rather than the more typical 0.05 m
width of experimental beams, since in the theoretical model it is assumed that
there is no motion in the direction of the width of the beam. Four different radii
of curvature were investigated, which were represented in terms of the non-

h
dimensional thickness to radius of curvature ratio, R These ratios were

( 1 1 1 1 )
——, and .
10 100 1000 10000
24 RESULTS

The solution of the Lovei and -Fliiggeﬂi‘based equations of motion for a curved
beam was obtained by substituting a given real valued wavenumber into the
equations of motion and, hence, calculating the two real valued radian

frequencies. Based upon the Love equations of motion, Figures 4 and 5 show the
wave motion characteristics for the beam with the severest thicknessZtoEadius of
curvature ratio (i.e. h/r = 1/1p). Figure 4 shows the relationship between wave
number and frequency, where the frequency data have been plotted on the
horizontal axis and the wavenumber data have been plotted on the vertical axis.

The frequency range is represented in terms of the non-dimensional frequency

O
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parameter Q = o where ¢, is the phase velocity of extensional waves in a

straight bar and the wave number range is represented in terms of the non-
dimensional wave number, kR. It can be seen that two types of wave exist : one
involving predominantly flexural motion and the other predominantly

extensional motion. The predominantly extensional wave "cuts-on" when the
non-dimensional frequency, , is equal to one. This is the familiar "ring

frequency" of cylindrical shell dynamics, and is the frequency when the

wavelength of extensional waves in a straight rod is equal to the circumference,
2rnR. It can be seen in Figure 4 that above the ring frequency the dispersion

relationship is essentially that of quasi-longitudinal waves in a straight rod. For
the predominantly flexural wave there is a special root at zero frequency (and
zero group velocity) when the non-dimensional wave number, kR, is equal to

one. This situation occurs when the wavelength of the predominantly flexural
wave is equal to the circumference, 2nR. For wave numbers of value just less

than the special root, kR =1, it can be seen in Figure 4 that there is a frequency
region where the dispersion curve of the predominantly flexural wave has
negative slope and, hence, negative group velocity. Although highly unusual,
waves with negative group velocity have also been predicted in cylindrical shell
sections [13]. For non-dimensional wavenumbers of value less than kR = 0.6 the
dispersion curve reverts to a positive gradient. For wave numbers of value
greater than the special root, kR = 1, it can be seen in Figure 4 that as the
frequency increases the dispersion curve for the predominantly flexural wave
becomes increasingly like the dispersion cur.\/e of purely flexural waves in a

straight Euler-Bernoulli beam. As the frequency increases, a frequency is reached
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where both wave types have the same wavenumber. This occurs when o = 1,

where K is the radius of gyration of the beam. This is when the wavelength of

extensional waves in a straight rod is equal to 2n X radius of gyration of the

curved beam (i.e. A, = 2nK). Dispersion curves for the beams with the less severe

s L and
100 1000 10000

thickness to radius of curvature ratios ( )showed a similar

pattern of behaviour. Indeed, with an astute choice of non-dimensional
frequency axis then all four dispersion curves for a particular wave type can be

made to lie on the same line. For example, in Figure 4 a non-dimensional

: ® : . .
frequency axis of Q = ~— was chosen. In this case all four dispersion curves for
8}

the predominantly extensional wave lie on the line marked with “0” symbols. Of
course, when the data are displayed against a dimensional frequency axis, such as
cycles per second (Hz), then as the radius of curvature increases the beam
behaviour becomes increasingly similar to that of a straight beam or rod. In the
limit, the dispersion curves approach the familiar straight beam relationships
illustrated in reference [5].

The predominantly flexural wave will involve extensional motion as well
as flexural motion. Conversely, the predominantly extensional wave will
involve flexural motion as well as extensional motion. This wave amplitude
relationship is shown graphically in Figure 5, displayed over the same frequency
range as used in Figure 4. The predominantly flexural wave amplitude ratio is
represented by the ratio of the extensional to flexural motionl, whilst the

-

predominantly extensional wave amplitude ratio is represented by the ratio of

\D



the flexural to extensional motion. It can be seen in Figure 5 that at the cut-on

frequency, Q = 1, the predominantly extensional wave is, in fact, dominated by

oK
flexural motion.  Similarly at the cross-over frequency, — = 1, the
o}

predominantly extensional wave is dominated by flexural motion. In the
frequency region between these two points the wave is dominated by extensional
motion. At the special root, kR =1, the predominantly flexural wave consists of
equal flexural and extensional motion. For non-dimensional frequencies greater

than the special root kR = 1, as the frequency increases the wave becomes

[0
increasingly flexural in nature until the cross-over frequency, o = 1, when

extensional motion again dominates. For non-dimensional wavenumbers less
than kR = 1, the predominantly flexural wave contains greater extensional
motion than flexural motion. The relative phase angle between the flexural and
extensional amplitudes, A and B, has not been shown. However, inspection of

the harmonic form of the equations of motion shows that for real valued

frequencies and wavenumbers the complex wave amplitudes A and B will

differ by +i. Thus, the displacements have a relative phase angle of +90 degrees.

The corresponding characteristics of wave motion in curved beams were
also investigated using the Flﬁggedl_based equations of motion. The simulated
beams were given identical dimensions and material properties as the beams
used previously for the Lovelbased analysis. The results of this investigation
revealed that both theories predict the identical wave behaviour in the low and

medium frequency regions and that only slight differences occur at high

0K
frequencies (in the frequency region near e 1).



S/

5

3.0 VIBRATIONAL POWER TRANSMISSION IN CURVED BEAMS

3.1 THEORY

In this Section the expressions for displacements and stresses presented in
Section two are used to derive the structural intensity and power transmission
due to flexural and extensional travelling waves in a curved beam. The
structural intensity expressions are formulated in terms of displacements at the
centre-line. By assuming sinusoidal wave motion, expressions are developed
which relate the time-averaged power transmission to the flexural and
extensional travelling wave amplitudes. The effect of curvature upon power
transmission is investigated using the same four beams whose wave motion

characteristics were studied inSection two.

Structural intensity in the circumferential direction of a curved beam is

given by [14]:

I, = (- Oy aa—ttj) + (— Cgr %Xtv-) (6)

intensity due to intensity due to
circumferential stress /\radial shear stress

By integrating across the beam thickness,power transmission per unit length in

the circumferential direction is obtained [15]:

h/2

p- | 1@ 7)

-h/2

Substituting the circumferential stress-strain relation and Love's strain-
displacement expression into equation (7), the power transmission due to
circumferential stress is obtained. (A full derivation is given in Appendix A.) By
analogy to power transmission in a straight beam this is expressed in terms of an

extensional component and a bending moment component, respectively:

12
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w du au

P = - SE [ﬁ+ —a's—] S5t (8)
- circumferential circumferential
( force ) ( velocity )
Jd (u ow J(u Jdw

P = -EI|3 (E" "a';)] [§(R"" x)] - ®)

—bending rotational

( moment ( velocity

Although the transverse shear stress, oy, is negligible under Love's first

approximation, the power transmission due to transverse shear stress can be
evaluated from the non-vanishing shear force, Q, because the radial
displacement, W, does not vary across the beam thickness. Again, by analogy to
power transmission in a straight beam, this is expressed as a shear force

component:

& (u dw w
PSf = - EI aSZ (R - aS ) W . (10)

(- shear force) (radial velocity)

Thus, total power transmission in the circumferential direction is given by:

Pg=Pe + Py + Pyt (11)

Using the Flﬁgge&based strain-displacement expression, equation (3), the
following power transmission expressions are obtained for the extensional,
bending moment and shear force components (a full derivation is given in

Appendix A):

w du) ElI{w 2w Ju
P, = - ES(E'+'8—S-)+K E+557 3 (12)
— circumferential circumferential
( force ) ( velocity )
w 02w d/u ow
Ppm = EI [R—2+ ﬁ] §(§- 'é-s—), (13)

13
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(— bending) (rotational

moment velocity

d0(w 0w ow
Py = EI ['a-g(R—z+ @)] P (14)
(- shear force) (radial velocity)

The total power transmission in the circumferential direction is given by

EI
equation (11). Equations (12) and (13) can be re-arranged by noting that the R

term in the extensional component, equation (12), is exactly cancelled by an
equivalent expression in the bending moment component, equation (13), giving

modified power transmission expressions:

w, o ou
—Love . .
(circumferential} (c1rcurr11fefi:nt1al)
force velocity
w 2w d( ow
Pom = El RZT 32 ﬁ(_ -gs—) . (16)

(—Flﬁggebending ( straight beam )
moment rotational velocity
The total power transmission in the circumferential direction is given by the
sum of equations (14), (15) and (16). For ease of reference these equations are also
listed in Table 5.
To obtain a relationship between vibrational power transmission and the
amplitude of the waves travelling in the beam assume that extensional and
flexural sinusoidal waves propagate in the positive s direction and can be

represented respectively by :

wi(st) = Re {Z\@ (ot - krs)1}
=A@[wt—kAs+eA], (17)

u(s,t) = Re {B@P) Blot - kgs)]}
. B@[mt - kgs|, (18)

4
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where 64 is the relative phase angle between the flexural and extensional
motions. As noted in_Section 2.4 this relative phase angle is plus or minus 90
degrees. Substituting the harmonic wave expressions equations (17) and (18), into
the Lovelbased power transmission equations, (8) — (10), gives expressions for the
power transmission in the circumferential direction in terms of the travelling
wave amplitudes A and B, and the relative phase anglé 0. The extensional,

bending moment and shear force components are respectively:

wBA

P.=ES [ [0t ~kas + BA]EID[t ~ kps] + okp B2Eint [t - kBs]] , (19)

Cl)kBBz (kB+kA)(0kABA

Py =ElL [R—z@z [ot — kgs] + R

@[wt - kBS]@[ﬂ)t —kas+60a] + wkp3 A [t — kAs]] , (20)
kgZo B A
Py =EI [- [t - kBs@[mt —kps + 64
+ ka3 AZ m@z [t —kps + BA]} (21)
Similarly, substituting the harmonic wave expressions (17) and (18) into the

Flﬁgge[based power transmission expressions, (14) - (16), gives the power

transmission in terms of the travelling wave amplitudes A and B:

BA -
Pe = ES|: R 0)@ [(Dt - kAS + OA@[wt— kBS]

+ kg B2 w@z [t - kBs]] , (22)
Py, = ELIAZkym kp2 L t—k 0 23
bm = AQ Kp® — 77 (cosf [t —kas + Bal, (23)

s



1
Psf=EIA2kAa)(kA2—R—2 s [0t — kas + 0], (24)

The total power transmission is given by the sum of the extensional, bending
moment and shear force components.

Z 3 So far,expressions have been developed for power transmission which are
functions of both position and time. For sinusoidal wave motion it is useful to

develop time-averaged power transmission defined by:

T/2

1
Pei= J P, (5,5, (25)
-T/2

where T is the period of the signal. Thus, the LoveZbased harmonic power

™~

transmission equations, (19) - (21), become:

SEBA® SE kgw B2
<Po>; = TR sinj[kas —kgs — 0a] + G E— (26)

, okgBZ wkpBA o ka3 Ap2
<Pbm>t=EI[ oRZ T IR (kB+kA)@[kAs—kBs—6A]+-2—, (27)

sz oBA k A3 ® A2
(28)

<Py = EI [— [kBS —kas+0Al+ ———

Similarly, the Flﬁgge‘lbased harmonic power transmission equations, (22) — (24),

—~\

become:

ESBA o ES kg o B2
P>y =~ (Ein)lkps - kps - 64] + ——5——, (29)
EIA2 mkp 1
<Pom>t=—"75 (kAz - @) (30)
EI A2 0 ky 1
<Pgp>i = — (kAz - -R—Z] . (31)

/6
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For a curved beam there is interaction between the longitudinal and
bending deformations leading to coupled extensional-flexural wave motion.
This is unlike the situation for straight beams where purely longitudinal and
purely flexural motion can exist independently. Using the Love and Fliigge
equations of motion for a curved beam it was shown that two types of elastic
wave exist, one involving predominantly extensional motion, the other
predominantly flexural motion. For a given harmonic wave of frequency, ®, and
wave number, k, the equations of motion were solved to find the associated

B
extensional to flexural wave amplitude ratio (K) and relative phase angle 64.

Thus, the time-averaged power transmission by a single harmonic wave is found

by setting the wave numbers ka and kp equal to k, say, and using the
corresponding extensional to flexural wave amplitude ratio. For the LoveZbased

power transmission equations, (26) — (28), this gives:

ESokB2 ESwBA

<Po> = > T sin)[6a], (32)
wokB2 ok3AZ 0k?BA .
<Pbm>t = EI[ 2R2 + 2 - R @[GA]] 7 (33)

EIk3w A2 ElwkZ2BA .
<Pyp>i=— -—% @[eA]. (34)

Similarly, time-averaged power transmission by a single harmonic wave using

the Fh‘iggeZbased equations, (29) - (31), is given by:

ESkwB2 ESwBA
<Pe>t = 2 - 2R [GA]/ (35)
EIAZwk 1
<Ppm>t = T(kz - R—Z) ' (36)



EIAZ @ k 1
<Pgppr=—F— (kz - ) (37)

2 R2 ]

Thus the total time-averaged power transmission by a single elastic wave in the
circumferential direction is given by the sum of the extensional, bending
moment and shear force components. Equations (32) - (37) are also listed in Table

6.

3.2 RESULTS OF COMPUTER SIMULATION

The power transmission expressions, (32) — (37), were programmed using
the matrix analysis program, MATLAB. The simulated beams were chosen to
have the same dimensions and material properties as those used in the study of
wave motion in Section two. Figure 6 shows the relationship between
transmitted power ratio and frequency over the same non-dimensional
frequency range as investigated in $ection two. For the predominantly flexural
wave the time-averaged transmitted power ratio is calculated by dividing the
time-averaged power transmitted along a curved beam by a predominantly
flexural wave (equations (32), (33) and (34), with k = kg, the predominantly
flexural wave number) by the time-averaged power transmitted by a pure
flexural wave travelling in a straight Euler-Bernoulli beam:

P <P, > + <Py, > +<Pg >
Pf <Pf>t

, (38)

where <Py = EIu)k?Az, where k; is the wavenumber and Ayf the wave
amplitude of a purely flexural wave in a straight beam. For the predominantly
extensional wave the transmitted power ratio is calculated by dividing the time-
averaged power transmitted along a curved beam by a predominantly
extensional wave (equations (32), (33) and (34), with k = kp, the predominantly
extensional wave number) by the time-averaged power transmitted by a purely

extensional wave in a straight rod:



P <Pe>t + <Ppm>t + <Pgp>t
Pex B <Pex>t ! (39)

where <Pey> = ES @ kex Bzx . Considering first the power transmitted by the
predominantly extensional wave, it can be seen in Figure 6 that below the ring
frequency, Q = 1, no power is transmitted. This agrees with the results of Section
two where it was shown that below the ring frequency there is no predominantly

extensional travelling wave motion. Above the ring frequenC}S but below the

oK . ,
cross-over frequency, —— =1, it can be seen that the transmitted power ratio takes
0

a value of 1.0. This indicates that the level of power transmitted along a curved
beam by a predominantly extensional wave is the same as the level of power

transmitted by a purely extensional wave travelling along a straight rod. Above

oK : . .
the cross-over frequency, = = 1, there is a divergence from straight beam
8]

behaviour. Considering now the power transmitted by the predominantly
flexural wave, it can be seen in Figure 6 that at very low frequency there are three
branches corresponding to the three dispersion curve branches shown in Figure
4. Following the uppermost branch it can be seen that at low frequency the
transmitted power ratio is greater than 1.0. This indicates that more power is
transmitted by a predominantly flexural wave travelling in a curved beam than
by a corresponding purely flexural wave in a straight Euler-Bernoulli beam.
However, as the frequency increases towards the ring frequency, Q = 1, the
transmitted power ratio reduces to 1.0. This indicates that a predominantly
flexural wave travelling in a curved beam and a purely flexural wave travelling

in a straight beam transmit the same amount of power. As the frequency

. . w .
increases this condition continues until the cross-over frequency, - =Lis
(o]

reached. Above the cross-over frequency there is a divergence from straight

beam behaviour.



4.0 THE EFFECT OF ROTARY INERTIA AND SHEAR DEFORMATION

It is known that shear deformation and rotary inertia effects become
significant for straight beams as the wave length approaches the thickness of the
beam [16], and for cylindrical shells as the shell radius decreases [10]. Thus, the

2 objective in this section is to establish more complete equations for power

transmission in a curved beam and to show under what conditions these

s@io the simple bending equations presented in Section three.

4.1 THE EFFECT OF ROTARY INERTIA

Rotary inertia effects are included by considering each element of the beam

2

J 92
to have rotary inertia (pI d—czpds) in addition to translational inertia ( S —a—vzvdsj

Using Fliigge's shell theory this leads to a modified shear force equation [8]:
oM 92 ru
Q=% -pI5(R+4)- (40)

7_ | Substituting for the Fliigge]_based bending moment resultant, M, and the rotation
of the normal to centre-line during deformation, ¢, gives the modified shear

force resultant as:
) W 82w 02 2u Jow
Q=-EI5; os|R2 T 952 —pl o2l R G s ) (41)

A set of equations of motion for a curved beam which include the effect of rotary
inertia are presented in [8]. These equations are listed in Table 3 in terms of the

A circumferential distance parameter, s. Assumin‘gﬁ\;armonic wave motion for the
propagating waves is given by equation (4) and (5), the harmonic form of the
equations of motion is given in Table 4.

By inspection of the resultant force expressions listed in Table 2 it can be

seen that the bending moment and circumferential force expressions)when



-

including rotary inertia effects)are identical to the corresponding Fliigge Zbased
expressions. However, the shear force component now contains an additional
rotary inertia term. Substituting the new shear force resultant, equation (41), into
equation (A15) gives the shear force component of power transmission in the

circumferential direction:

9 (w w) L 9272u Iw ow

(- shear force) (radial velocity)
For sinusoidal motion represented by equations (17) and (18) this becomes:

1
Py =Elky Azm(kAz—ﬁJ@ [ot —kas + 4]

2
+p I(T{- B A 03(os [a)t—kBs@cot—kAs + 64l

— kp AZ @3(sin? [ot —kps + GA]). (43)

The time-averaged shear force component is found by substituting equation (43)

into equation (25) to give:
Elkp AZ @ 1
<Psf>t = __—2 [kAz - "R_z“)

Iw3 /2 .
+ 2 (ﬁBA@[kBs—kAs+GA]—kAA2). (44)

For a single harmonic wave the shear force component becomes:

ElkA?0 (, 1 plwdk A2
<Pgpr=—7—|k rR2|TT 2

3
+ _(pI(DRBA siny[6a]. (45)

2



The total power transmitted by a single elastic wave in the circumferential
direction is given by the sum of the modified shear force component, equation
(45), the previously derived bending moment component, equation (36), and

extensional component, equation (35).

42 THE EFFECT OF SHEAR DEFORMATION

If shear deformation is included then Kirchoff's hypothesis (normals
remain normal) is no longer valid, and the rotation of the normal to the centre-
line during bending, ¢, is no longer defined by equation (2) but is now another
independent variable related to the shear angle, y. Due to shear, a rectangular
element of the beam tends to go into a diamond shape without rotation of the

face, and the slope of the centre-line is diminished by the shear angle y:
u Jdw
(ﬁ—;g) =0-7 . (46)

Figure 7 illustrates the shear deformation of a rectangular element.

The circumferential strain-displacement expressions are identical to those of
the simple bending theories. However, unlike the other theories consideregl) the
substitution for the rotation, ¢, is omitted) %iving the circumferential strain-

displacement in terms of tangential, u, radial, w, and rotational, ¢, displacements:

1 w dJu 0
eg = Z (R—+¥)+Zas' 47)

Substituting this equation into the circumferential stress-strain relation, equation

(7), the circumferential stress-displacement equation is obtained:

GszE(l—;lT)[(%+%)+zg—§]. (48)
R

L



Unlike simple bending theories, where the transverse shear strain, vy, is

negligible, the transverse shear strain is now related to the shear angle, v:

Y
YSI’ = Z\"'
(1 + E‘)

Using equation (46) this can be expressed in terms of displacements u, w and ¢:

(49)

vsr=(1i—£) o-(&-5)) (50)

R

Substituting this into the shear stress-strain expression gives the shear stress-

displacement equation:

Gop = Gm [q> —(%-%—VSV)]. (51)

By integrating the stresses across the beam thickness, the circumferential force,

bending moment, and shear force resultant are obtained [8]:

w, owy Elfw 1du d¢
w 1du do
M=—El(ﬁ+ﬁ¥—$), (53)

I u 0w
szG(S +ﬁ)[¢—(ﬁ—$ﬂ’ (54)

where x is the Timoshenko shear coefficient, whose value depends upon the
shape of the cross-section.
A set of equations of motion for a curved beam which includes the effect of

refefua?
shear deformation is presented irx [8]. These equations are listed in Table 3 in
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terms of the circumferential distance parameter, s. For sinusoidal motion assume
that the tangential and radial displacements are given as before by equations (4)

and (5). In addition)let the rotation of the normal to the centre-line be defined by:
O (s,t) = é@@(mt—- ks)] (55)

where C is the complex wave amplitude. Substituting the harmonic
displacement expressions (4), (5) and (55) into the shear deformation based
equations of motion gives the harmonic form of the equations of motion which
are listed in Table 4.

Power transmission equations in the circumferential direction can be
obtained in a manner analogous to that given in Appendix A for the Lovel and
Flﬁggeibased theories. First, consider the circumferential stress contribution
equation (A3). Substituting the circumferential stress-displacement equation,
(48), and the tangential displacement, equation (la), into equation (A3) gives the

power transmission due to circumferential stress:

h/2
Py =~ J E(li—%)[(%+%)+zg—i}] [%(u+z¢))}/@z. (56)
-h/2

The integrands are expanded, and terms of degree greater than three discarded.
The integration is performed using the results of equations (A7a) - (A7d) to give
the power transmission contribution due to circumferential stress, which as

before can be identified as consisting of extensional, P,, and bending moment, P,

components:
w du) Elfw 1du d¢ ou
P = - ES(E+§;)+R R_2-+§"§;_-a? S (57)
— circumferential circumferential
( force ) ( velocity )
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w 10du d¢ o)
Ppm = EI{E'Z—-{-ié-S__B_S-] i (58)

—bending rotational
( moment ) ( velocity )

The contribution to the power transmission from the transverse shear stress is
obtained from the product of the shear force resultant, equation (54), and the
radial velocity, equation (1b), which gives the shear force component of power

transmission:

Py = -G (s + i%z—j [q) - Gi—- %%)] -aal:’— (59)

(- shear force) (radial velocity)

Thus, the total power transmission in the circumferential direction is given by
the sum of the extensional, bending moment and shear force components.

For sinusoidal wave motion assume that the tangential and radial
displacements are defined, as before, by equations (17) and (18). In addition, let

the rotation of the normal to the centre-line be defined by:

b (s = Re {CEP Blot - kes)l}
= C(cos ot — kes + 6¢], (60)

where 6¢ is the relative phase angle between the rotational and extensional
motions. Substituting the harmonic displacements, equations (17), (18) and (60)
into the extensional, bending moment and shear force components derived

above gives the power transmission due to harmonic wave motion:

EBAw I :
Pe :'T (S + Ez")@[ﬁ)t— kAS + OA]@[mt— kBS]

El
-~ ke BC o @n)lot - kes + 0c]Ein)ot - kes]

Y



I
+Ekg B2 o (s + ﬁ) @ [0t — kas], (61)

Py, = EI [kc C2 [t - ks + 0¢]

_ R—ZC g)[cot—kAs + eA]@[mt—kcs +8c¢]

kg B C
- BR o §in)[ot - kBs@[wt ~kes + GC]} , (62)

I
Py = kG (S + @)[kA A2 [ot—kps +64]

BAw®

- (D [0t - ks + 0a]C09 [0t ~ kgs]

+ ACm@[mt—kAs+eA]@{(ot~sz+Gc]]. (63)

Time-averaged power transmission due to sinusoidal wave motion is found
by summing the harmonic power transmissions equations, (61) — (63), over one

3
5 Z?) period using equation (25), E‘{iving the extensional, bending moment and shear

force components, respectively:

EBA® I
Pe>t=—"2R (S + E-Z-) @[kAs —kps - 64l

ElkeCB o
- —— (E3)kps — ks + 6]
EkBBz(D I
+—§-———-(5+R—2), (64)
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kCCZ(n ACw
<Pbm>t:EI[ 5 - ToR2 @[kAs—sz—9A+6C]

kB BCw
- —5r—(€0s)lkes ~kps - 0cl |, (65)

[\ kaA?0 BAco
<Pyt = KG(S+—)|: 5 @[kBs—kAs+6A]

ACw
+

kas+6a - BC}] . (66)
(¢ ¢) For a single harmonic wave, equations (64) to@become:

EkB2w I EIkBC(D
<P> = —2——( + ﬁ) —7(s]oc]

EmBA(

J@[BA] (67)

EIkCZw EIkBCw
<Ppm>t=""75 - R cog/[0¢]

ElwAC
-~ @ [6c - 6al, (68)

I kAZco ®BA ~
<Pyt = kG S+ﬁ7 - @GA

owAC ]

+ —Z@[GA - 6¢]

(69)
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Thus, the total time-averaged power transmission by a single harmonic wave in
the circumferential direction is given by the sum of the extensional, bending

moment, and shear force components.

4.3 RESULTS OF COMPUTER SIMULATION

To investigate the effect of beam curvature upon wave motion the rotary
inertia based, and shear deformation based equations of motion were
programmed in the same manner as the Loveiand Flﬁggelbased equations. The
simulated beams studied had material properties and physical dimensions
identical to those investigated in section two.

Solution of the rotary inertia equations of motion reveals that this
assumption only makes a difference to the wave motion in a curved beam at
high frequency (when the wave lengths approach the dimensions of the
thickness of the beam). At lower frequencies both the predominantly flexural
wave and the predominantly extensional wave behave as predicted by the Love
and Flﬁgge{based theories.

Solution of the shear deformation equations of motion for a curved beam
show that three types of elastic wave exist: the predominantly flexural and
predominantly extensional waves of simple bending theory and additionally a
predominantly rotational wave related to the shear angle. The relationships
between wave number and frequency for these three wave types are shown in
Figure 8. The data are displayed using the same non-dimensional frequency
range and non-dimensional wave number range as used in Figure 4. It can be
seen in Figure 8 that both the predominantly extensional wave and the
predominantly rotational wave exhibit "cut-on" frequencies. As before, the
predominantly extensional wave ‘cuts-on” when Q = 1.0, and for this particular

beam the predominantly shear wave ‘cuts-on” at Q = 20. For a straight beam the

® .
shear wave "cut-on" frequency is given in [5] as — =1, where ¢ is the wave
S

2%



20

: kG
speed of shear waves in a straight beam, i.e. ¢s = \/: . For a curved beam the "cut-
p

on" frequency can be found) from the characteristic equation in [8] Jo be when

) e
(DK +R2 +R2

Cs - K2
[

Thus, for the thickness to radius of curvature ratios considered in this study the

1/2

(70)

curved beam shear wave "cut-on" frequency is approximately the same value as
for the straight beam. Below the shear wave cut-on frequency the relationship
between wave number and frequency for the predominantly flexural wave and
the predominantly extensional wave is the same as that predicted by the Lovez
and Flﬁggez based theories. However, the predominantly flexural wave and the
predominantly extensional wave will now contain three wave components
representing the flexural, extensional and rotational motion.

To investigate the effects of shear deformation upon time-averaged power
transmission the shear deformation based equations, (67) to (69), were
programmed in MATLAB and the simulated beams chosen to have the same

dimensions and material properties as in the earlier studies. Figure 9 shows the

" relationship between transmitted power ratio and frequency, shown using the

same non-dimensional frequency range as Figure 6. For the predominantly
flexural wave the time-averaged power ratio is calculated by dividing the power
transmitted by a flexural wave as predicted by shear deformation based theory by

the power transmitted by a flexural wave as predicted by the Love 1based theory.
Thus:

P, _ (67)+(68)+(69)
P (32)+(33)+(34)

(71)

Iv

For the predominantly extensional wave the time-averaged power ratio is

calculated by sﬁbstituting wave amplitude, phase angles and wave numbers for
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the predominantly extensional wave into equation (71). Figure 9 shows this

ratio, marked with ‘o’ symbols, plotted against non-dimensional frequency. It

- : ®R . o
can be seen in Figure 9 that below the ring frequency, — =1, this ratio is zero
CO

because there is no travelling extensional wave. Above the ring frequency but

below the shear wave cut-on frequency, Q = 20, this ratio is one, indicating that

-

there is no difference between the shear deformation and Love|based theories.
However, above the shear wave cut-on frequency this ratio diverges from unity,
thus, indicating that higher order effects are important. Figure 9 also shows the
transmitted power ratio of the predominantly flexural wave (marked with ‘+’
symbols). It can be seen in Figure 9 that below the ring frequency this ratio is one,
indicating that there is no difference between the shear deformation and Lovez
based theories. Above the ring frequency this ratio differs from unity, indicating
that higher order effects are important. This is not surprising since an analysis of
“corrected” bénding waves in a straight beam [16] has shown that corrections for
rotary inertia and shear deformation will have a 10% difference on the
propagation velocity, and hence power flow, when the wavelength is less than

six times the thickness of the beam. For the curved beam used in the current
study this occurs when the non-dimensional frequency, €, is greater than 3.2.

Power is also transmitted by the predominantly rotational wave, however, this
wave has a very high ‘cut-on’ frequency and is above the main frequency range of

interest of this study. Hence, the power transmitted by this wave is not shown.

5.0 SUMMARY AND DISCUSSION

This paper has presented expressions for vibrational power transmission in

N
a curved beam derived using four different theories. L@s ‘based equations
include extension of the centre-line during bending motion, and were the first

set of equations considered. Pliiggeibased equations also include centre-line

extensions and were the second set of equations used. Corrections for rotary

3D



inertia and shear deformation produced the third and fourth sets of equations,

respectively.
Using the governing equations for each theory, expressions have been

derived for power transmission along a curved beam which are given in terms of
the centre-line displacements. By analogy with power transmission in a straight
beam these equations are expressed in terms of extensional, bending moment
and shear force components. By assuming sinusoidal wave motion, expressions
have been developed which relate the time-averaged power transmission to the
amplitudes of the extensional, flexural and rotational displacements.

Expressions for structural intensity in other types of curved structure have
already been publishe-_@;\l?avic [12] has derived expressions for an arbitrarily
shaped thin shell presented in terms of generalised curvilinear co-ordinates.
These can be reduced to equations applicable to a curved beam by assuming that
displacements occur in one plane only and then converting to polar co-ordinates.
With some manipulation, LoveZbased power transmission equations are
obtained. Pavic has also derived expressions for structural intensity in a circular
cylindrical shell [11], which can be reduced to equations applicable to a curved
beam by assuming that there is no axial motion. With some rearrangement
Fh’iggg]:based power transmission equations are obtained. For ease of reference
the equations for displacement, strain - displacement, stress-strain, and force
resultants for each theory are presented in Tables 1 and 2. The equations of
motion and their harmonic form are presented in Tables 3 and 4, whilst the
equations for power transmission and time-averaged power transmission are
presented in Tables 5 and 6. ’

For each theory the effect of curvature upon wave motion and power
transmission was investigated using beams with different degrees of curvature.
From the results of this study vibrational power transmission in curved beams
can be classified into three different frequency regions whose limits depend upon
the type of wave considered.

For the predominantly extensional wave the frequency regions are:

(i) below the ring frequency, Q = 1, where curvature effects are important;



oK
(ii) above the ring frequency but below the shear wave cut-on frequency, o
S

=1, where the curved beam behaves essentially as a straight beam; and

(iii) above the shear wave cut-on frequency, where higher order effects are
important.

For the predominantly flexural wave the frequency regions are:

(i) below the ring frequency, Q =1, where curvature effects are important;

(ii) above the ring frequency but below the frequency where the wavelength is
less than six times- the thickness of the beam. In this region the curved beam
behaves essentially as a straight beam; and

(iii) above the frequency where the wavelength is less than six times the

thickness of the beam. In this region higher order effects are important.

: 1l
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APPENDIX A : DERIVATION OF POWER TRANSMISSION
EQUATIONS USING LOVE'S STRAIN-DISPLACEMENT EXPRESSION
AND FLUGGE'S STRAIN-DISPLACEMENT EXPRESSION

Intensity in the circumferential direction of a curved beam is given by:

oU oW
lg=—0s 57 ~Osr 31~ (A1)

By integrating across the thickness, h, the power transmission per unit length is

obtained:

h/2

P, = JIS@,

-h/2

h/2

f U EA%
= (— Os 5t ~ Osr T)@ . (A2)

-h/2
Consider first the contribution due to the circumferential stress term of
equation (A2):

h/2

P = - f (os aa—ttj)@z . (A3)

-h/2

Substituting Love's strain-displacement equation into the circumferential stress-

strain equation gives the circumferential stress-displacement equation:

csszE[(vR—v+ aa—l;)+ zaa—s(%— _8(%)] (A4)



Representing circumferential displacements of the material point in terms of

displacements at the centre-line, equations (la) and (2), gives the circumferential
velocity:

oU o u ow
e :y(u iz (R-_ g)) (A5)

Substituting the circumferential stress-displacement equation (A4) and the

circumferential velocity, equation (A5), into equation (A3) gives the power

transmission per unit length due to circumferential stress:

h/2

e[ ouy, 9 (u_ow
Pa = - E[(R+Bs)+zas(R_8s)J

-h/2

X %[u + 2z (%— %%)] @ (A6)

By expanding the integrands and discarding terms of degree greater than three,

the integrations can be carried out using the results:

h/2
f dz=h, (A7a)
-h/2
h/2
f dz =0, (A7b)
-h/2
h/2 -
- h3
A
J zz@z =15 (A7¢)
-h/2
h/2
f 23(dz=0. (A7d)
-h/2
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Thus, for a curved beam of unit width, the power transmission per unit length

due to circumferential stress is:

R
55 FE-E (a9

For a strip beam of width, b, the cross-sectional area, S, and the second moment

w  Jdu\du
Psl =—Eh ('_'-l- ég‘)ﬁ

of area, I, can be introduced to give the total power transmitted by the beam. By
analogy with power transmission in a straight beam an extensional and a

bending moment component can be identified:

_ w,ou du
P, - -BS(g+3) . (9)
— circumferential circumferential
( force ) ( velocity )
_ I[ﬁ_ u B_W] [_3_ u a_W}
Pom = -E as(R‘ 83) at(R_ Bs) ' (A10)
—bending rotational
( moment ) ( velocity )

Now consider the contribution to power transmission per unit length due

to the transverse shear stress term in equation (A2):

h/2

Py=- | (osraa—zv) k. (A11)
-h/2

The radial displacement, W, does not vary across the thickness of the beam, thus

from equation (1b) the radial velocity is:

oW dw
5t T ot (A12)
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Substituting the radial velocity into equation (All) gives the power transmission

per unit length due to transverse shear stress:

h/2

ow
Py = - fcsr@z = (A13)
-h/2

Although the transverse shear stress, o4, is negligible, a non-vanishing shear

resultant, Q, can be defined as the integral across the thickness of the shear stress:

h/2

Q= f Oseldl - (A14)

-h/2

Thus, the power transmission due to transverse shear stress is:

ow
Py=-Q3r (a15)

Substituting the Lovelbased expression for the shear force resultant, Q, gives an
expression which can be identified as the shear force component of the power

transmission:

P (u dw w
Py = -FI asz(-R—— as) pral (A16)

(shear force) (radial velocity)
Thus, the total power transmission in the circumferential direction is given by
the sum of the extensional, bending moment and shear force components:
Ps = Pe + Pbm + Psf' (A17)
To evaluate the power transmission using Fliigge's strain-displacement

expression, consider first the contribution due to the circumferential stress,

equation (A3). Substituting Fliigge's strain-displacement equation (3) into the
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circumferential stress-strain equation gives Fliigge's stress-displacement

equation:
1 w du J (u Jw

GS=E__2_)[(E%)+Z§(E-¥)]. 19

(1 +R
Substituting the circumferential stress equation (A18) and the circumferential
velocity, equation (A5), into equation (A3) gives the power transmission per unit

length due to circumferential stress:

h/2

) (g + %Sﬂ)+ Zéag(%_ %_VSV)}
[u vz (E %—"SV)] (k. (A19)

e
S
"ot

z
For a curved beam, - is less than unity, thus the quotient can be expanded

as a geometric series:

¢ i_) - ZO(‘E) ' (A20)
R

- z
For sufficiently small i this series can be truncated after terms of degree three.

Substituting the truncated series into equation (Al9), the integrands are
expanded and terms of degree greater than three discarded. The integrations are
then carried out using the results (A7a) — (A7d) to give power transmission due

to circumferential stress in a curved beam of unit width as:

>9



w owy b (w dwl)lou
P =-E h(R+as)+12R R2+832 ot

Bhd fw d2w|rd u ow
*T2 |R2 Y 9 [at(R—as)]' (A21)

For a beam of width, b, an extensional and a bending moment component of

energy flow can be identified:

P = w ow Elfw dhw 9u A
— circumferential circumferential
( force ) ( velocity )
_ g X, Pw) rdmu ow
—bending rotational
( moment ) ( velocity )

The contribution to power transmission due to transverse shear stress can be
evaluated using equation (A15) and substituting the Plﬁggelbased expression for

shear force resultant, to give the shear force component of power transmission:
b - mld(Z,EW)| A%
sf = Js|R2 T 382 ot - (A24)
— shear radial
( force ) (velocity)

Thus, the total power transmission in the circumferential direction is given by

the sum of the extensional, bending moment and shear force components.
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APPENDIX B : NOTATION

flexural wave amplitude

amplitude of flexural wave in a straight beam
extensional wave amplitude

amplitude of extensional wave in a straight bar
rotation wave amplitude

Young's modulus

shear modulus

second moment of area of cross-section of beam
structural intensity in circumferential direction
radius of gyration

bending moment on cross-section of beam
circumferential force on cross-section of beam

transmitted power!

bending moment component of transmitted power
extensional component-of transmitted power

power transmitted by extensional wave in a straight bar
power transmitted by flexural wave in a straight beam
transmitted power in circumferential direction
transmitted power due to circumferential stress

shear force component of transmitted power

shear force on cross-section of beam

radius of curvature

cross-sectional area of beam

period of wave

displacement of material point in circumferential direction

displacement of material point in radial direction



b breadth (width) of beam

Co wavespeed of extensional waves in a straight bar

Cs wavespeed of shear waves in a straight bar

ds length of elemental slice of curved beam

es total circumferential strain

h thickness of beam

k wavenumber

ka flexural wavenumber

kg extensional wavenumber

ke rotational wavenumber

kex wavenumber of extensional wave in straight bar

k¢ wavenumber of flexural wave in straight beam

r co-ordinate in radial direction

S co-ordinate in circumferential direction

t time

u displacement at centre-line in circumferential direction
w displacement at centre-line in radial direction

z co-ordinate of outward pointing normal

Q non-dimensional frequency

Bs bending strain

Y shear angle

Yor transverse shear strain

€ radial strain

€ circumferential strain

0 displacement at centre-line in radians

0a relative phase angle between the flexural and extensional motions
Oc relative phase angle between the rotational and extensional motions

K Timoshenko shear coefficient



wave length
wave length of extensional waves in a straight bar
Poisson's ratio

density

radial stress
circumferential stress
transverse shear stress

change in slope of normal to centre-line during deformation

radian frequency

Special symbols

< > time average

1

The term ‘'power flow', although not physically accurate, has gained
widespread acceptance. In this paper the term 'transmitted power' is used to
denote the power (in Watts) flowing through a beam, whilst the term
'intensity’ is used to denote the power transmitted per unit area normal to
the direction of propagation (in Watts/m?2).
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Figure

FIGURE CAPTIONS

A typical machinery installation in a ship.

Geometry of a curved beam.

Sign convention and force resultants on an elemental slice of curved
beam.

Non-dimensional wave number, kR, versus non-dimensional
frequency, Q = wR/c,, relationship for a curved beam with a thickness

to radius ratio of ('/,,) predicted using the Love based theory: ‘+ =
predominantly flexural travelling wave; ‘o’ = predominantly

extensional travelling wave.
Wave amplitude ratio versus non-dimensional frequency, Q = @wR/c,,

relationship for a curved beam with a thickness to radius ratio of (*/,,)
predicted using the Love based theory: ‘+' = wave amplitude ratio
(extensional amplitude / flexural amplitude) for a predominantly
flexural travelling wave; ‘0o’ = wave amplitude ratio (flexural amplitude
/ extensional amplitude) for a predominantly extensional travelling

wave.
Transmitted power ratio versus non-dimensional frequency, Q = R/,

relationship for a curved beam with a thickness to radius ratio of (/)
predicted using the Love based theory: ‘+" = transmitted power ratio,
(<P> / <Pp), for a predominantly flexural travelling wave; ‘0o’ =

transmitted power ratio, (<P> / <P,>), for a predominantly extensional

travelling wave.



Shear deformation of a rectangular element: ‘¢’ = rotation of normal to

centre line; "y’ = shear angle.
Non-dimensional wave number, kR, versus non-dimensional
frequency, Q = wR/c,, relationship for a curved beam, with a thickness

to radius ratio of (‘/,,) predicted using the shear deformation based

s 7 7

theory: ‘+" = predominantly flexural travelling wave; ‘0" =
predominantly extensional travelling wave; ‘X’ = predominantly shear

travelling wave.

Transmitted power ratio, (<P,> / <P,>), versus non-dimensional
frequency, Q = wR/c,, relationship for a curved beam with a thickness

to radius ratio of (*/,,) predicted using the shear deformation and Love

/ 7

based theories: ‘+’ = transmitted power ratio for a predominantly
flexural wave ratio; ‘o’ = transmitted power ratio for a predominantly

extensional wave.
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