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Wireless Distributed Learning: A New Hybrid Split
and Federated Learning Approach

Xiaolan Liu Member, IEEE, Yansha Deng Member, IEEE, and Toktam Mahmoodi Senior Member, IEEE,

Abstract—Cellular-connected unmanned aerial vehicle (UAV)
with flexible deployment is foreseen to be a major part of the
sixth generation (6G) networks. The UAVs connected to the
base station (BS), as aerial users (UEs), could exploit machine
learning (ML) algorithms to provide a wide range of advanced
applications, like object detection and video tracking. Conven-
tionally, the ML model training is performed at the BS, known
as centralized learning (CL), which causes high communication
overhead due to the transmission of large datasets, and potential
concerns about UE privacy. To address this, distributed learning
algorithms, including federated learning (FL) and split learning
(SL), were proposed to train the ML models in a distributed
manner via only sharing model parameters. FL requires higher
computational resource on the UE side than SL, while SL has
larger communication overhead when the local dataset is large.
To effectively train an ML model considering the diversity of UEs
with different computational capabilities and channel conditions,
we first propose a novel distributed learning architecture, a
hybrid split and federated learning (HSFL) algorithm by reaping
the parallel model training mechanism of FL and the model
splitting structure of SL. We then provide its convergence
analysis under non-independent and identically distributed (non-
IID) data with random UE selection scheme. By conducting
experiments on training two ML models, Net and AlexNet, in
wireless UAV networks, our results demonstrate that the HSFL
algorithm achieves higher learning accuracy than FL and less
communication overhead than SL under IID and non-IID data,
and the learning accuracy of HSFL algorithm increases with
the increasing number of the split training UEs. We further
propose a Multi-Arm Bandit (MAB) based best channel (BC)
and best 2-norm (BN2) (MAB-BC-BN2) UE selection scheme to
select the UEs with better wireless channel quality and larger
local model updates for model training in each round. Numerical
results demonstrate it achieves higher learning accuracy than BC,
MAB-BC and MAB-BN2 UE selection scheme under non-IID,
Dirichlet-nonIID and Dirichlet-Imbalanced data.

Index Terms—Wireless unmanned aerial vehicles (UAV) Net-
works, Federated learning (FL), Multi-Arm Bandit (MAB), Split
learning (SL), User (UE) selection

I. INTRODUCTION

Cellular-connected unmanned aerial vehicle (UAV) network
is becoming an integral component of the beyond fifth gener-
ation (5G) and upcoming sixth generation (6G) networks [1],
[2] to provide a variety of advanced applications ranging from
real-time video streaming to surveillance. In this new network,
the aerial users (UEs), i.e., UAVs, fly over the target area with
the control of the base stations (BSs) to collect data (e.g.,
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images and videos), and then they collaborate with the BSs
to perform data processing for supporting those applications.
Recently, machine learning (ML) algorithms, like deep neural
network (DNN) and convolutional neural network (CNN),
have been effectively used to provide efficient data processing
for those applications through extracting the features and
insights from a large dataset. However, each UE is only able
to collect a sub-dataset that only contains partial information
of the target area. The conventional approach is to gather the
sub-datasets from all the UEs to the BSs for centralized ML
model training, known as centralized learning (CL). In this
case, the UEs require wide bandwidth and large amount of
energy to transmit their sub-datasets to the BSs, and may
potentially reveal their private information through the trans-
mission process [3]. In practice, the transmission processes
from UAVs to the BS always suffer from limited bandwidth
and dynamic wireless channels, and the UAVs are powered by
energy-limited batteries, hence, transmitting raw data to the BS
is challenging. Due to the growing computational capability
of computing engines, such as the CPU, GPU and DSP (e.g.,
Qualcomm Hexagon Vector extensions on Snapdragon 835 [4],
and the possibility of equipped GPU on UAVs), the UAVs are
able to perform ML model training locally using their own
sub-datasets and then only share model parameters instead
of raw data with the BSs. Therefore, distributed learning
algorithms are emerged to provide ML model training in a
distributed manner, which becomes a more attractive solution
for supporting advanced applications in cellular-connected
UAV networks.

The two state-of-art distributed learning algorithms, fed-
erated learning (FL) and split learning (SL), have different
learning architectures and therefore are suitable for different
application scenarios. In FL, all the UEs collaboratively train
an entire ML learning model (e.g., DNN) with the help of
a central parameter server collecting and performing model
aggregation with the received local model updates from the
UEs [5]. FL architectures rely on the fact that all of the
UEs are capable of performing gradient descent and having
powerful computational capabilities. Different from FL, SL
was recently proposed in [6], [7] by splitting the ML model
(e.g., DNN) into several sub-models (e.g., a few layers of
the entire DNN) with the cut layer and distributing them to
different entities (e.g., the UE-side model at the UEs or the
server-side model at the server), which facilitates distributed
learning via sharing the smashed data of the cut layer. In
this case, SL limits the UE-side model down to a few layers,
thus reduces the computational overhead of the UEs compared
to FL. Interestingly, the researches in [7], [8] have shown
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that FL is more communication or computation efficient with
small model size and large dataset size, whereas SL is more
efficient with increasing the number of UEs or the model
size. However, in practical UAV networks, the UAVs have
diverse computational capabilities, own different datasets (e.g.,
imbalanced and non-independent and identically distributed
(non-IID) data distribution over them), and heterogeneous
communication and energy resources, either deploying FL or
SL may be not efficient. Motivated by this, a splitfed learning
(SFL) has been proposed in [9], which exploits the parallel
model training mechanism in FL and model splitting structure
of SL. By doing so, the SFL shortens the training time in
SL and becomes more communication efficient than FL when
the number of UEs is large. However, the SFL algorithm still
exhibits high communication overhead similar to SL when the
number of UEs is small and the dataset over UEs is highly
imbalanced. To address this, there is an urgent need to propose
a hybrid solution that can well leverage the advantages from
both FL and SL even for small number of UEs and the highly
imbalanced datasets.

While deploying distributed learning algorithms in wireless
networks, not all the UEs can access to the BS in each
communication round due to unreliable and randomly fading
wireless channels from the UEs to the BSs, so it’s essential to
develop efficient UE selection schemes to select reliable and
informative UEs to participate in distributed learning in each
round. In FL, UE selection schemes have been widely studied
[10]–[15], where the parameter server determines which UEs
should participate in FL according to their channel conditions
and resource information (e.g., throughput, computational re-
source) . Generally, the UE selection in FL has been studied
either based on channel qualities [10]–[12] or the importance
of local model updates [13]–[15]. In [10], the proportional
fair UE selection policies based on the instantaneous channel
qualities were developed. In [11], a joint learning, wireless
resource allocation and UE selection problem was formulated
and optimized to minimize the FL loss function. The authors
in [12] studied the UE selection scheme that maximizes the
number of selected UEs in each round based on their wireless
and computational resource conditions. The authors in [13]
proposed a reliable UE selection scheme by considering the
reliability of the dataset owned by UEs. The reliability of
dataset has a great impact on the importance of local model
updates while training a ML model with the dataset, the user
selection policy taking into account both channel conditions
and the importance of local model updates at the UEs was
proposed in [14], [15].

Nevertheless, the above studies [10]–[15] assumed that
the UE information, including channel conditions and the
importance of local model updates, is known in advance. In
practice, it is difficult to obtain accurate UE information before
the execution of the learning procedure, it also consumes extra
computation and communication resources to estimate each
UE’s local model updates before UE selection. To address
this, the dynamic UE selection scheme for FL based on Multi-
Arm Bandit (MAB) has been proposed [16]–[18], in which
the parameter server selects the UEs through exploration and
exploitation processes according to the estimated local model

updates of UEs [16] or the estimated channel qualities of UEs
[17], [18]. Moreover, from [10]–[15], when deploying FL in
wireless networks, both channel qualities and the importance
of local model updates are significant to select UEs for global
model aggregation in each round. However, as far as we
know, there are rare existing works that have considered
both factors together to design UE selection schemes using
MAB algorithm. Different from considering any of them, the
exploration process of exploiting MAB algorithm needs to
maximize a weighted sum of both channel qualities and the
importance of local model updates, which causes a challenge
of finding a trade-off between those two parameters when
selecting UEs.

Motivated by the above, we will study distributed learning
architecture to train ML models for supporting advanced ap-
plications, like fire tracking and flood monitoring, in wireless
UAV networks. We consider a group of aerial UEs are flying
over a target area under the control of the BS to collect image
data with the equipped camera. Here, each UAV is carried
with a powerful processing unit (e.g., NVIDIA JETSON) [19]
that may have different computational capabilities, and it can
only capture a sub-dataset that observes partial information of
the target area, and thus the whole dataset collected by all
the UAVs may be on imbalanced and non-IID distribution.
By transmitting the sub-datasets to the BS, an immediate data
aggregation can be performed to enable each UE access to
the complete environment information captured by other UEs.
However, the transmission process of raw data is expensive
in terms of energy and bandwidth, and possibly introduces
infringements of UE privacy. To address these challenges, we
first propose a novel distributed learning architecture, namely
the hybrid split and federated learning (HSFL) algorithm,
that encompasses the parallel model training mechanism of
FL and the model splitting structure of SL. We conduct
the experiments on the image recognition task using MINST
dataset and perform training on two different ML models, Net
and AlextNet, with the goal of improving the learning accuracy
and communication efficiency in wireless UAV networks using
the proposed distributed learning algorithms.

The main contributions of this work are summarized as
follows.

1) We propose an HSFL algorithm that allows a portion
of UEs to train an entire ML model locally, namely
federated training, and other portions of UEs to train
the ML model collaboratively with the BS, namely split
training. Our results show that the learning accuracy re-
sults follows: CL> SL > HSFL > FL/SFL, in wireless
UAV networks under IID and non-IID data.

2) We perform fundamental analysis on an expression for
the convergence rate of HSFL algorithm in wireless
UAV networks under non-IID data with random UE
selection scheme. Our analytical result reflects that the
convergence speed increases with increasing the number
of split training UEs.
We exploit MAB algorithm to design UE selection
scheme based on the discounted upper confidence bound
(UCB) policy. Then, an MAB-BC-BN2 UE selection
scheme is proposed to select the UEs with better wireless
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channel quality and larger local model updates to partic-
ipate in ML model training in each round by designing
a trade-off function of both factors as the UCB score.

3) Our results demonstrate that our proposed HSFL algo-
rithm achieves around half less communication over-
head and faster convergence compared to SL and SFL.
Additionally, the communication efficiency of HSFL is
better than that of FL, and improves with the increasing
number of UEs. We also show that our proposed MAB-
BC-BN2 UE selection scheme achieves better learning
accuracy performance than BC, MAB-BC and MAB-
BN2 UE selection schemes under non-IID, Dirichlet-
nonIID and Dirichlet-Imbalanced data.

The organization of this paper is presented as follows. In
Section II, we present the system model and learning model, as
well as the learning problem formulation in wireless networks.
Section III introduces the proposed HSFL algorithm including
its learning procedure and convergence analysis in wireless
networks. Then the UE selection schemes are illustrated
in Section IV. The experiments and simulation results are
demonstrated in Section V, finally the conclusions are drawn
in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As illustrated in Fig. 1, we consider a single-cell wireless
UAV network, consisting of a BS located at the center of the
cell, and a set of aerial UEs N = {u1, ..., uN} distributed in
the BS coverage area as predefined flight paths and remained
spatially static during the process of ML model training. In
this network, the total system bandwidth is equally divided
into M radio access channels, where M < N . The BS S
is assumed to have a single antenna and equipped with high
computational capability, and located at the origin of the 3D
coordinates system with the antenna installed at the altitude
hs above the ground. Each UE is also equipped with a single
antenna and a lightweight GPU. We assume that all the UEs
transmit data with a constant power Pn = P . The location of
UE un is denoted as (xn, yn, hn). Each UE is assumed to fly
at the fixed altitude hn above the ground while the horizontal
coordinates (xn, yn) of each UE vary over time.

A. Channel Propagation Model
From Fig. 1, in the considered cellular-connected UAV

networks, only the information including the BS’s and UAVs’
locations, and the type of environment (e.g. rural, suburban, ur-
ban, highrise urban, etc.) is available. Noted that, in such prac-
tical scenarios, one may not have any additional information
about the exact locations, heights, and the number of obstacles.
Therefore, to consider the possibility of occurrence of LoS
link affected by the environment, we adopt the channel model
for ait-to-ground (ATG) communication in urban environment
presented in [20], [21]. Here, we consider the randomness
of LoS communication links using an LoS probability PLoS

n,s ,
which depends on the environment, the location of UE and
BS, as well as the elevation angle. Thus, the LoS probability
is given as

PLoS
n,s =

1

1 + a · exp(−b[θn,s − a])
, (1)
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Fig. 1. System model

where a and b are the environmental parameters indicating the
type of environment, like rural, urban or dense urban, θn,s is
the elevation angle of the UE-BS communication link. In (1),
θn,s = 180

π × sin−1(hn−hs

distn,s
), where distn,s is the Euclidean

distance between UE un and BS S, calculated by distn,s =√
x2
n + y2n + (hn − hs)2. The LoS probability increases with

increasing the elevation angle and the UE’s altitude.
As stated in [22], the communication paths of ATG channels

depend on both LoS and NLoS propagations, and it’s impos-
sible to determine the exact LoS/ NLoS status of the UE-BS
link. Thus, we consider the spatial expectation of the pathloss
for LoS and NLoS groups as the pathloss model to describe
the UE-BS communication channel, which is given by

ξ̄ij = PLoS
n,s φl(

4πf · distn,s
c

)α + PNLoS
n,s φn(

4πf · distn,s
c

)α,

(2)
where PNLoS

n,s = 1 − PLoS
n,s is the NLoS probability, f is the

system carrier frequency, c is the light speed, and α denotes
the path loss exponent, φl and φn are the additional path loss
coefficients of LoS and NLoS, respectively.

B. Problem Formulation

At the BS, the goal is to learn a statistical model over
the dataset distributed among N UEs, that is, the BS aims
to obtain an optimal vector ω to minimize an empirical loss
function L(ω) (e.g., L(xTω) = 1

2

∥∥y − ϕ(ωT x)
∥∥) by using

the dataset distributed over all the UEs under its service. The
local loss function of the un that measures the prediction error
of its local dataset Dn, dn = |Dn| denoting the data size, can
be defined as

Ln(ω) =
1

dn

dn∑
i=1

l(ω, xin), ∀n ∈ N . (3)

where l(ω, xi
n) is an empirical loss function defined by the

learning task, which quantifies the loss of the ML model at
sample xin.

The objective of the considered learning task is to find
the optimal model weights ω∗ that minimize the global loss
function L(ω) [23] as

OP1 min
ω∈R

L(ω). (4)
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To solve the optimization problem OP1, two distributed
learning approaches, FL and SL, can be used to train the ML
model by exploiting the computational capabilities of the UEs
in a distributive manner. However, FL has higher requirements
on the computational resource at the UEs and SL has higher
communication overhead when the dataset is large at UE.
To efficiently obtain the solution to OP1 with the dataset
distributed over the heterogeneous UEs, we propose a novel
distributed learning architecture, namely the HSFL algorithm,
which keeps the parallel model training mechanism of FL and
the model splitting structure of SL.

C. The FL and the SL Preliminaries
In this section, we present the learning procedures of using

FL or SL to solve the optimization problem OP1.
1) FL Algorithm: To solve the optimization problem OP1

using FL, we can convert OP1 to the following

OP2 min
ω∈R

{L(ω) =
1

d

N∑
n=1

dnLn(ω)}, (5)

where d =
N∑

n=1
dn is the size of the whole dataset. By

applying the Federated Averaging algorithm proposed in [5] to
solve OP2, the general learning procedure of this algorithm is
illustrated in Fig. 2 (a). In Fig. 2 (a), each UE receives a global
model, ωt, from the BS and trains it with the local dataset
by minimizing the local loss function (3), it then performs
gradient descent, such that the global model ωt is updated at
UE un to ωn

t+1, thus the local model updates can be defined
as

∆ωn
t = ωn

t+1 − ωt. (6)

The BS periodically collects the local model updates from
the UEs and then performs model aggregation to generate the
improved global model and sends it back to the UEs. The
whole process, defined as one communication round, repeats
a sufficient amount of rounds until the objective function
converges to the global optima.

2) SL Algorithm: SL algorithm is another state-of-art dis-
tributed learning techniques without need of directly accessing
the raw data. Unlike FL, where each UE trains the entire ML
model, SL divides the ML model into at least two sub-models,
and trains them separately at the UE and the BS. As shown in
Fig. 2 (b), the SL framework with multiple UEs in centralized
mode [6] is illustrated, where each UE holds a fraction of
dataset Dn, to participate in training the model aiming to
minimize the global loss function L(ω) sequentially. From
Fig. 2 (b), the ML model is divided into two sub-models by
the cut layer C, the first sub-model is trained at the UEs,
termed as UE-side model ωl

t, whereas the second sub-model
is trained at the BS, termed as BS-side model ωe

t . As such,
each UE only needs to train a sub-model, consisting of a few
layers and the rest of layers reside at the BS, which can reduce
the computational load of each UE.

To solve the optimization problem OP1 with SL, we can
convert it to

OP3 min
ω∈R

{L(ω) =
1

d

N∑
n=1

dnLn(ω)}. (7)
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Fig. 2. The illustration of FL [5] and SL [7]

where the full model ω includes two sub-models ωl
t and ωe

t ,
it can be denoted by

ω = {ωl
t;ω

e
t } (8)

If we use the classical sequential SL mechanism to solve
OP3, the learning procedure is presented as the following
steps: 1) the BS initializes the global BS-side model ωe

t and
the global UE-side model ωl

t, then sends ωl
t to the UE u1;

2) the UE u1 trains ωl
t over its local dataset D1 and then

sends the output of the cut layer C, a1
t , to the BS; 3) the BS

receives and feed forwards a1
t to the BS-side model ωe

t , and
then it calculates and back propagates the loss to the cut layer
C, where its gradients, gt

1, are computed; 4) the BS sends gt
1

back to UE u1 for back propagation and updating the UE-side
model ω1,l

t , UE u1 then updates the UE-side model and sends
it back to the BS; and 5) the UE u2 receives the UE-side model
ω1,l

t from the BS and then starts training on its local dataset.
This repeats until the training of the last UE is finished, then
one communication round is finished.

D. UE Selection

When applying FL algorithm in wireless networks, the lim-
ited bandwidth and dynamic communication channels make
the BS unable to access all the UEs in each round. Addition-
ally, different local model updates are of dissimilar importance
to the model convergence [15], [24]. Therefore, it’s essential
to develop efficient UE selection schemes to select a subgroup
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of UEs that provide the most useful information in each
round. Due to the parallel model training mechanism of FL,
applying the proposed HSFL algorithm in wireless networks
also requires efficient UE selection scheme. Inspired by [24],
we propose a MAB-BC-BN2 UE selection scheme by jointly
taking into account both channel qualities and the importance
of local model updates. For comparisons, we also implement
the BC and BN2 UE selection schemes proposed in [24] as
the benchmark schemes, and also propose the MAB-BC and
MAB-BN2 UE selection schemes.

III. A NOVEL DISTRIBUTED LEARNING ARCHITECTURE:
HSFL ALGORITHM

In this section, We present our proposed novel distributed
learning architecture, an HSFL algorithm, by exploiting the
advantageous learning mechanisms of FL and SL. In the fol-
lowing, we first introduce its learning procedure, then propose
a wireless HSFL algorithm with its convergence analysis.

A. HSFL Learning Procedure

Inspired by [9], [25], we propose a novel HSFL algorithm
with the detailed learning procedure as illustrated in Fig. 3.
Let us consider the UE set U = {u1, ..., un, un+1, ..., uN}
with diverse computational capabilities, channel qualities and
energy resource, and the dataset owned by UEs is imbalanced
and non-IID. In our proposed HSFL algorithm, we allow a
portion of UEs to implement split training method with lower
computational capability at the UE side, while allowing the
rest portion of the selected UEs to use federated training
method with less communication overhead when the dataset is
large at the UE. Then, the UEs perform local model training
in parallel and send the local model updates to the BS where it
performs model aggregation and generates new global models.

The detailed steps are given in Fig. 3. Here, if u1 and uN

are scheduled for federated training, they receive the global
model parameters ωt of the entire ML model from the BS and
perform local training only at the UE sides. On the other hand,
if un and un+1 are scheduled for split training, they receive
the global UE-side model parameters ωl

t, i.e., a sub-model of
the entire ML model from the BS, at the same time, the BS
initializes the global BS-side model parameters ωe

t (adopts
sequential training at the BS). Then, the UEs perform local
training in parallel at both UE and BS sides. Noted that the
BS undertakes two tasks, including the BS-side model training
for the split training UEs and model aggregation for all the
UEs. When each UE finishes its local training, it sends the
local model updates to the BS where the model aggregation
is performed as in FL and the global model ωt+1, the global
UE-side model ωl

t+1 and the global BS-side model ωe
t+1 are

generated.
Next, the local model updates of the federated training

UEs and split training UEs in the HSFL algorithm will be
discussed, respectively.

1) Federated Training: The federated training UEs un, n ∈
NFt follow the same local model update rule as in (6),

∆ωn
t = ωn

t+1 − ωt = −ηtg
n
t , (9)
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Fig. 3. The illustration of HSFL algorithm

where ηt denotes the learning rate, and gn
t denotes the

gradients computed at the UE.
2) Split Training: The split training UEs un, n ∈ NSt train

the global UE-side model ωl
t over the local datasets to the

cut layer C in parallel, and then send the output of the cut
layer, the activations an

t , to the BS. The BS is supposed to
be super resourceful and can provide fast model training, such
that it sequentially performs forward propagation to the BS-
side model ωe

t with the received activations an
t , n ∈ NSt to

calculate the loss function Ln(ω
n
t ) . Then the gradients of the

cut layer are computed and sent back to the UEs for the back
propagation and updating the UE-side models, respectively.

Specifically, let us consider a split training UEs set un ∈
{u1, u2, ..., uNS

}, n ∈ NSt
. At first, the activations of user

u1 are fed forward to the BS-side model for calculating the
gradients, and thus the BS-side model and the UE-side model
of user u1 are updated based on the those gradients. Then,
the actiations of user u2 are fed forward to the updated BS-
side model by the activations of user u1, and thus the updated
BS-side model and the UE-side model of user u1 are updated.
This process continues to update the BS-side model and the
UE-side models with the activations received from all the split
training users. Since the model updates of BS-side model are
based on the updated BS-side model before, more local model
updates will be obtained by the UEs starting from u2.

Therefore, the local model updates of the split training UE
un are given by

∆ω1
t = ω1

t+1 − ω1
t = −ηtg

1
t ,

∆ω2
t = ω2

t+1 − ω1
t = −ηtg

1
t − ηtg

2
t ,

......,

∆ωNS
t = ωNS

t+1 − ω1
t = −ηtg

1
t − ηtg

2
t − ...− ηtg

NS
t ,

(10)

where ω1
t = ωt, and the gradients of each UE un,∀n ∈ NSt

is
calculated by g1

t = ∇L1(ωt), g
2
t = ∇L2(ωt − g1

t ), ..., g
NS
t =

∇LNS
(ωt − g1

t−, ...,−gNS−1
t ).

3) Model Aggregation of HSFL: Accordingly, the new
global models are updated at the BS by performing model
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aggregation of all the local model updates obtained from both
federated training UEs and split training UEs as

ωt+1 = ωt −∆ωt = ωt − (
∑

n∈NFt

pn∆ωn
t +

∑
n∈NSt

pn∆ωn
t ).

(11)
The average local model updates of the federated training

UEs un, n ∈ NFt
are given by∑

n∈NFt

pn∆ωn
t = p1∆ω1

t + p2∆ω2
t , ...,+pNF

∆ωNF
t

= −p1ηtg
1
t − p2ηtg

2
t , ...,−pNF

ηtg
NF
t .

(12)

The average local model updates of the split training UEs
un, n ∈ NSt

are calculated by∑
n∈NSt

pn∆ωn
t = p1∆ω1

t + p2∆ω2
t , ...,+pNS

∆ωNS
t

= p1(−ηtg
1
t ) + p2(−ηtg

1
t − ηtg

2
t )+, ...,

+ pNS
(−ηtg

1
t − ηtg

2
t − ...− ηtg

NS
t )

= −p1ηtg
1
t − p2ηtg

2
t , ...,

− pNS
ηtg

NS
t − p2ηtg

1
t − p3(ηtg

1
t + ηtg

2
t )

−, ...,−pNS
(ηtg

1
t + ηtg

2
t+, ...,+ηtg

t
NS−1)

= −p1ηtg
1
t − p2ηtg

2
t−, ...,−pNS

ηtg
NS
t

− p2∆g2
− p3∆g3

−, ...,−pNS
∆gNS

,
(13)

where ∆g2 = ηtg
1
t ,∆g3 = ηtg

1
t + ηtg

2
t , ...,∆gNS

= ηtg
1
t +

ηtg
2
t+, ...,+ηtg

t
NS−1.

Since the BS-side models can be trained sequentially at the
BS with the received activations from the split training UEs,
the UEs un, n ∈ {2, ..., NS} will receive more local model
updates ∆gn than they are trained in parallel. This means if
the same number of UEs are trained with federated training
or split training, the later one will provide more local model
updates in each round. Therefore, the model aggregation in
the HSFL algorithm is derived as

ωt+1 = ωt − (
∑

n∈NF

pnηtg
n
t +

∑
n∈NS

pnηtg
n
t +

NS∑
n=2

pn∆gn).

(14)

B. Wireless HSFL Algorithm

In the considered wireless UAV networks, the UEs and
BS collaboratively train the ML model for accomplishing the
object recognition task based on the transmission of model pa-
rameters with dynamic and randomly fading wireless channels.
Considering the diversity of the UEs with different computa-
tional capabilities, dataset distribution and channel conditions,
the HSFL algorithm is needed. The general procedure of the
wireless HSFL algorithm is summarized in Algorithm 1.

C. Convergence Analysis

In this section, we perform fundamental convergence anal-
ysis for our proposed wireless HSFL algorithm, where only
a subset of UEs K are selected to participate in the global
model training in one communication round due to the lim-
ited bandwidth and unreliable wireless communication links.

Algorithm 1 Wireless HSFL Algorithm
1: Initialize global model ωt, global UE-side model ωl

t and
global BS-side model ωe

t , set t = 0
2: Repeat
3: The BS selects a subset of UEs K, then schedules UE set

KS on split training and UE set KF on federated training.
4: The BS distributes ωt to the UE set KF and distributes

ωl
t to the UE set KF .

5: for UE n ∈ K do
6: if n ∈ KF then
7: UE un computes ∆ωn

t as in (9)
8: else if n ∈ KS then
9: UE un collaborating with the BS computes ∆ωn

t as
in (10) with transmitting the activations and gradients
of the cut layer in the uplink and downlink.

10: end if
11: end for
12: The BS computes the new global model as in (11)
13: Set t = t+ 1
14: Until the desired convergence performance is achieved or

the final iteration arrives

We analyze the convergence performance of the proposed
HSFL algorithm under non-IID data [26] with the random
UE selection scheme. We first present the preliminaries and
assumptions, and then the convergence result is obtained.

1) Preliminaries: The optimal solution of the global loss
function L(ω) in (4) is defined as

ω∗ ∆
= argmin

ω
L(ω), (15)

so the minimum loss is L∗ ∆
= L(ω∗). Similarly, the minimum

loss of UE un is denoted by L∗
n = Ln(ω

∗). Then the local-
global objective gap is defined as

Φ
∆
= L∗ −

N∑
n=1

pnL
∗
n, (16)

where Φ is nonzero, which quantifies the degree of non-
IID data, its magnitude reflects the heterogeneity of the data
distribution, that is, larger Φ implies higher data heterogeneity
over the UEs. If the data is IID, then Φ obviously goes to zero
as the number of samples grows.

2) Assumptions: We make the following assumptions on
the loss function and the stochastic gradients.

Assumption 1. L1, ..., Ln are all ℓ-smooth, i.e., for all υ and
ω, Ln(υ) ≤ Ln(ω) + (υ − ω)T∇Ln(ω) + ℓ

2 ∥υ − ω∥22
Assumption 2. L1, ..., Ln are all µ-strongly convex, i.e.,
for all υ and ω, Ln(υ) ≥ Ln(ω) + (υ − ω)T∇Ln(ω) +
µ
2 ∥υ − ω∥22
Assumption 3. Let ξnt present the random sample dataset from
the UE un. The variance of stochastic gradients in each UE
is bounded: E ∥∇Ln(ω

n
t , ξ

n
t )−∇Ln(ω

n
t )∥

2 ≤ δ2n, for n =
1, ..., N



7

Assumption 4. The expected squared norm of the stochas-
tic gradients is uniformly bounded, i.e., E ∥gn(ωn, ξn)∥2 ≤
G2, for n = 1, ..., N

3) Convergence Result: As discussed before, only a subset
of UEs Kt is selected to join in the global model training
in each communication round t. To establish the convergence
bound, we need to make the assumption on the selected UEs
first.

Assumption 5. Assuming that Kt is a subset of UEs including
K UEs randomly sampled from the available UE set Nt

including N UEs without replacement, so that the probability
of each UE being selected to contribute global training is
P = K

N . Assuming that the data set is on non-IID and
balanced in the sense that p1 = ... = pN = 1

N , thus
the model aggregation at the BS is fulfilled as ωt+1 =
ωt − N

K (
∑

n∈KFt

pn∆ωn
t +

∑
n∈KSt

pn∆ωn
t ).

Theorem 1. Let Assumptions 1,2,3,4 and 5 hold, we assume
ϱ = 2

µ with ι = 4ℓ
µ and let κ = ℓ

µ , then the proposed HSFL
algorithm with K UEs selected for participation satisfies

E [L(ωT )]− L∗ ≤ κ

ι+ T − 1

(
2W

µ
+

µι

2
E ∥ω1 − ω∗∥2

)
,

(17)

where W =
N∑

n=1
p2nδ

2
n + 6ℓΦ + 8η2tG

2(1 − NS(NS−1)
2N ) +

N−K
K(N−1) (4N − 2NS(NS − 1))G2.

Proof. The proof is presented in Appendix 1.

From Theorem 1, we can conclude that the increment of
total communication rounds leads to the convergence of our
proposed HSFL algorithm. Moreover, the convergence perfor-
mance has a weak dependence on the number of selected UEs
K, but the convergence speed increases with the increasing
number of UEs on split training NS .

IV. USER SELECTION

In this section, we present the details of our proposed UE
selection schemes. To train the ML model with the dataset
distributed over the diverse UEs in wireless UAV networks,
the limited bandwidth and dynamic communication channels
make the BS cannot access all the UEs in each round.
Additionally, different local model updates are of dissimilar
importance to the model convergence [15], [24]. Therefore, it’s
essential to develop efficient UE selection schemes to select a
subgroup of UEs that provide the most useful information in
each round.

A. UE Selection Scheme

The channel quality and importance of local model updates
are two key concerns when developing UE selection schemes,
the authors in [24] developed the BC and BN2 UE selection
schemes.

1) BC UE Selection Scheme: In this scheme, the BS does
not need any information about the local model updates of
the UEs, and only selects K ≤ N UEs with the best channel
qualities from the available UE set N in round t,

Kt = max[K]{γ1
t , ..., γ

N
t }, (18)

where γ1
t denotes the SNR of user u1 in round t.

2) BN2 UE Selection Scheme: This scheme requires an
extra estimation phase, the BS requires all the UEs to compute
their local model updates ∆ωn

t and send back ∥∆ωn
t ∥2

representing the importance of local model updates in the first
estimation phase. Then the BS selects K devices with the
largest ∥∆ωn

t ∥2 in round t, which is given as

Kt = max[K]{
∥∥∆ω1

t

∥∥
2
, ...,

∥∥∆ωN
t

∥∥
2
}. (19)

The authors in [24] then proposed a UE selection scheme
that jointly considering channel qualities and the importance
of local model updates, which provides a better long-term
performance than scheduling policies based only on either of
the two metrics individually. However, in practice, it is difficult
to obtain accurate channel conditions and local model update
information before learning procedure is conducted, it also
consumes extra computation and communication resources to
estimate each UE’s local model updates in the extra estimation
phase. Fortunately, the dynamic MAB-based UE selection
scheme [16] can address this problem by selecting UEs
according to the estimated information using trail-and-error
rule. In this case, we do not need the pre-estimation step to
estimate UE information in each training round. Hence, in this
section, we will exploit MAB algorithm to solve the dynamic
UE selection problem by jointly considering channel qualities
and the importance of local model updates.

B. MAB-based UE Selection Scheme

In this section, we present our proposed MAB-based UE
selection scheme, which formulates the UE selection in the
wireless HSFL algorithm as a MAB problem, and uses the
discounted UCB policy to estimate the UEs with expected
larger local model updates and better channel quality. This
scheme provides an exploitation-exploration trade-off to select
UEs with both larger local model update and better channel
quality (i.e., exploitation) as that leads to faster convergence
[27], and also to ensure UE diversity (i.e., exploration) [16].

Knowing that the importance of local model updates
∥∆ωn

t ∥2 and the channel quality γn
t of UE un are non-

stationary during communication rounds, we apply the dis-
counted MAB algorithm [28]. The discounted UCB algorithm
has been modified for UE selection in [16] by measuring the
local loss values of the UEs and received good performance.
Therefore, we first propose MAB-BC and MAB-BN2 UE se-
lection schemes by modifying the discounted UCB algorithm
taking into account the channel qualities and the local model
updates, respectively. To jointly consider both of them, we
propose a novel MAB-BC-BN2 UE selection scheme.

Our proposed MAB-BC-BN2 UE selection scheme is based
on UCB policy which makes decisions depending on the
UCB score. It performs exploration by selecting UEs that are
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selected less often, and exploitation by selecting the UEs with
the largest reward. We view the UEs as the arms in the MAB
problem and separately compute discounted cumulative values
of the ∥∆ωn

t ∥2 and the SNRs, i.e., Ωn
t (λ) and Γn

t (λ), as the
cumulative rewards, and a discounted count of the number of
times each UE has been selected, Mn

t (λ), till communication
round t.

Thus, the discounted UCB score for each UE un in com-
munication round t is defined as

An
t (λ) = pnf(K,n), (20)

where pn is the dataset size ratio of UE un, λ denotes the
discount factor, and f(K,n) is the UCB index function.

1) MAB-BC UE selection scheme: If we only consider
UE’s channel quality as the reward in the considered MAB
problem, the UCB index function f(K,n) is given by

f(K,n) = Γ̄n
t (λc). (21)

2) MAB-BN2 UE selection scheme: If we only consider
the importance of UE’s local model updates as the reward
in the considered MAB problem, the UCB index function
f(K,n) is given by

f(K,n) = Ω̄n
t (λl). (22)

3) MAB-BC-BN2 UE selection scheme: In this scheme,
by jointly considering channel conditions and the importance
of local model updates as the reward, the UCB index function
f(K,n) is defined as

f(K,n) = βΩ̄n
t (λl) + (1− β)Γ̄n

t (λc), (23)

In (23), two terms represent the importance of local model
updates and the channel quality, respectively, and β is the
balance factor between them.

Ω̄n
t (λl) =

Ωn
t (λl)

Mn
t (λl)

+

√
2σ2

t

log(Tt(λl))

Mn
t (λl)

Γ̄n
t (λc) =

Γn
t (λc)

Mn
t (λc)

+

√
2σ2

t

log(Tt(λc))

Mn
t (λc)

(24)

Ωn
t (λl) =

t∑
τ=1

λt−τ
l I{n∈Kt−1}∆ωn

t

Γn
t (λc) =

t∑
τ=1

λt−τ
c I{n∈Kt−1}γ

n
t

Mn
t (λi) =

t∑
τ=1

λt−τ
i I{n∈Kt−1}, Tt(λi) =

t∑
τ=1

λt−τ
i , i ∈ {l, c}

(25)
Here, the discount factor 0 ≤ λi ≤ 1 indicates the

significance of stale values, λi = 1 means all the past rewards
contribute equally to the calculation of Ωn

t (λl) and Γn
t (λc),

and λi = 0 indicates that only the latest reward is used to
estimate the value. Thus, 0<λi<1 means putting less weight
of stale rewards to calculate the Ωn

t (λl) and Γn
t (λc). This can

avoid the noise in the latest evaluation and the discounted stale
rewards computed in the past while computing the estimated
values. In practice, the discount factor λi in two terms, i.e.,

Algorithm 2 MAB-BC-BN2 UE Selection Algorithm
Initialization

Input: K, KS , KF , β λ, pn for n ∈ N
Initialization: Randomly select K0, KS0

and KF0
; a list

A of length N ; t = 1
Learning:

1: for t ≤ T do
2: for i ∈ K do
3: The BS distributes ωt to un, n ∈ KFt−1 and ωt,l to

un, n ∈ KSt−1
.

4: UEs respectively train the global model with respect
to their local dataset.

5: UEs compute the l2-norm ∥∆ωn
t ∥2 of the local model

update as (9) and (10), and then upload them to the
BS.

6: end for
7: The BS receives the local model updates and measures

the received SNR γn
t of each UE.

8: The BS calculates the UCB score An
t (λ) and updates

list A[n] = An
t (λ).

9: The BS generates a UE set Kt = { K clients with the
largest values in A }, and assign the UE set KSt

and
KFt

10: Update the elements in A by A = λA
11: end for
12: Return selected UE set Kt, KSt and KFt .

Ωn
t (λl) and Γn

t (λc), can be set as different values, which
means the past rewards may have different impacts on channel
qualities and the significance of local model updates. The
λc can be set based on the empirical fluctuation of wireless
channels, while λl can be set based on the dataset distributions
over the UEs. In the exploration term

√
2σ2

t
log(Tt(λi))
Mn

t (λi)
, σt is a

hyper-parameter controlling the degree of exploration, which
is defined as the maximum standard deviation in the reward
computed over the latest update of the UEs. If the UE has
not been selected very often, or not at all, then Mn

t (λi) will
be small so that the exploration term will be large, making
this UE more likely to be selected. As time progresses, the
exploration term gradually decreases (due to (logn)/n goes to
zero as n goes to infinity ) until eventually UEs are selected
based only on the exploitation term. Therefore, we propose
a MAB-BC-BN2 UE selection algorithm to accomplish the
MAB-based UE selection scheme with the detailed process
provided in Algorithm 2.

V. EXPERIMENTS AND NUMERICAL RESULTS

In this section, the learning performance of our proposed
HSFL algorithm is provided, which is compared with the CL
algorithm and the state-of-art distributed learning algorithms,
including FL, SL and SFL algorithm, by simulating the
learning task, image recognition, in wireless UAV networks
using classical MINST dataset [29]. This image classification
task relying on aerial UEs, i.e., UAVs, to collect dataset,
has been investigated in many practical scenarios, such as
mapping applications [30] and damage assessment for post
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TABLE I
DNN MODEL ARCHITECTURE

Architecture No. of parameters layers Kernel size
Net 60 thousands 4 (5 × 5), (5 × 5)

AlexNet 60 million 8 (3 × 3), (3 × 3), (3 × 3),
(3 × 3), (3 × 3)

disaster analysis [31]. We then compare the performance of
different UE selection schemes for selecting UEs to join in
model training with wireless HSFL algorithm under IID, non-
IID, Dirichlet-nonIID and Dirichlet-ImD data.

A. Experiment Environment

The experiments are conducted by the laptop with one
NVIDIA RTX 2070 GPU and Intel i7-10750H CPUs, where
the BS’s programming code is running on the GPU while the
UEs’ programming codes are running on the CPU. We con-
sider training two different DNN models, Net and AlextNet,
on MINST dataset, the architectures of which are shown in
Table I. For all the experiments using SL, SFL and HSFL
algorithm, the DNN network is split in the second layer, i.e.,
after the first conv1 layer. In this paper, to verify the learning
performance of the proposed HSFL framework, we simulate a
wireless UAV network with one BS located at the origin of the
cell and multiple UAVs uniformly distributed within the cell.
The cell radius is 500 m, the height of the BS antenna is 20 m
and the UAV’s flying height is in the range of 20-80 meters.
The detailed simulation parameters of the UAV networks are
provided in Table II.

B. Learning Performance Comparisons

In this section, the learning performance of our proposed
wireless HSFL algorithm is studied in terms of test accuracy,
training time and communication overhead. We adopt BC UE
selection scheme to select K = 10 UEs from N = 100 UEs
for training in each round, and set Ks = KF = 5 for HSFL
algorithm. The IID and non-IID data follow the same settings
in [5]. We set the local training rounds τ = 5 and the batch
size b = 10. The local learning (LL) and CL algorithms are
also simulated as the benchmarks. In LL algorithm, each user
is training the DNN model locally without sharing any raw
data or model parameters to the BS. In CL algorithm, all the
users have to send their raw data to the BS for performing
centralized training.

1) Learning Accuracy Performance: In Fig. 4 and 5, the
learning accuracy performance of Net and AlexNet is pre-
sented, respectively. The CL has the highest learning accuracy
while training both ML models. From Fig. 4, we can observe
that the HSFL algorithm provides similar test accuracy per-
formance as SL (sequentially SL can be viewed as optimal as
the centralized learning) and better test accuracy performance
than FL and SFL under both IID and non-IID data. This is
because in HSFL algorithm, half number of the UEs perform
split training which brings the superiority in test accuracy
performance. In Fig. 5, it shows that the learning accuracy
performance of using different learning algorithms to train

TABLE II
SIMULATION PARAMETERS OF THE WIRELESS UAV NETWORK

Parameters V alue
φl, φn 21, 1
a, b 5.0188, 0.3511

Rician factor Kdb 2 dB
system carrier frequency 2 GHz

Noise power σ2 -130 dBm
Ps, Pn 40 dBm, 23 dBm
Bs, Bw 5 MHz, 1MHz
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Fig. 4. Test accuracy performance of different wireless distributed learning
algorithms on IID and non-IID data with BC UE selection scheme, K =
10, N = 100,Ks = 5.

AlexNet has similar trend to train Net shown in Fig. 4, and it
takes less communication rounds to converge. From Fig. 5, the
HSFL algorithm also has better learning accuracy performance
than FL and SFL, and it converges faster.

2) Training Time and Communication Overhead: The train-
ing time is calculated to include two parts, computation and
communication time. The computation time is monitored by
using time module in Python, while the UE’s local training
is simulated by running on the CPU and the BS’s model
aggregation or training are running on the GPU on my laptop.
On the other side, the communication time is calculated
by simulating the transmission process of model parameters
through the wireless channels in wireless UAV networks,
the simulation parameters related to the wireless transmission
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(a) AlexNet with IID data
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Fig. 5. Test accuracy performance of different wireless distributed learning
algorithms on IID and non-IID data with BC UE selection scheme and using
AlexNet model, K = 10, N = 100,Ks = 5.

links are shown in Table II.
The communication overhead mainly includes two parts of

calculation, model size and smashed data including activations
and gradients of the cut layer in split learning. The model size
is calculated by its model parameters, where each parameter
is represented by a standard 32-bit floating point. The size of
activations and gradients is computed by calculating the output
size of the cut layer.

We consider four scenarios with the number of UEs N =
10, 50, 100, 200, and select K = 1, 5, 10, 20 UEs in each
scenario, respectively, in each round for model aggregation on
IID and non-IID data. In HSFL, the number of split training
UEs in each scenario is set as KS = 0/1, 2, 5, 10, note that
when K = 1, the UE either performs split training with
KS = 1, or performs federated training with KS = 0. We
set Bw = 1 MHz, which is shared by the selected UEs in
each round with each UE allocated with the same bandwidth.
SL adopts sequential training, where only one UE takes up the
whole bandwidth in each round in all the considered scenarios.
In contrast, FL, SFL and HSFL are training in parallel, so
that all the UEs selected in each round will share the whole
bandwidth.

Fig. 6 (a) shows the total training time over UEs N =
10, 50, 100, 200 four scenarios when training the learning
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Fig. 6. Training time and communication overhead comparisons of different
wireless distributed learning algorithms on IID data with BC UE selection
scheme, N = 10, 50, 100, 200,K = 1, 5, 10, 20,KS = 0/1, 2, 5, 10

model Net. The CL has the highest training time over all
the scenarios because in which all the UEs have to upload
their raw dataset to the BS in each scenario. The training time
of FL increases with increasing number of UEs because the
bandwidth allocated to each UE is decreasing. The SL and SFL
experience similar training time performance since the total
bandwidth is fixed and the training time mainly depends on
the communication latency. Compared to SL and SFL, HSFL
spends less training time because in this case only half of the
selected UEs share the total bandwidth while performing split
training, which reduces the communication latency for each
communication round. Likewise, Fig. 7 (a) shows the total
training time over UEs when training on AlexNet. In this case,
the total training time of FL is increasing significantly with
the increasing number of UEs because it makes the commu-
nication overhead increase significantly, Since the model size
of AlexNet is larger than Net, communication overhead will
increase a lot with the increasing number of UEs to send their
model parameters to the BS. However, the proposed HSFL
algorithm has the shortest training time compared to the other
distributed algorithms, except local learning, which follows
the same reason as training on Net shown in last subsection.
Moreover, we can observe that the training time of FL is larger
than SL, SFL and even CL when the dataset is distributed over
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Fig. 7. Training time and communication overhead comparisons of different
wireless distributed learning algorithms on IID data with BC UE selection
scheme, N = 10, 50, 100, 200,K = 1, 5, 10, 20,KS = 0/1, 2, 5, 10

200 UEs.
Fig. 6 (b) plots the total communication overhead per round

when training on Net. The CL has the highest communication
overhead over all the distributed algorithms when training on
Net. However, when training on AlexNet, the communication
overhead of CL becomes less than most distributed learning
algorithms. This is because the model size of ALexNet is
larger than Net, which causes large communication overhead
for the distributed learning algorithms that include model pa-
rameters transmission. The communication overhead of FL is
increasing over UEs N = 10, 50, 100, 200 because more users
need to transmit their model parameters. The communication
overhead of SL and SFL are almost the same and keeps
unchanged over the increasing number of UEs, this is because
the communication overhead of them, i.e., the activations and
gradients of the cut layer, is decided by the size of local
dataset at each UE. Specially, HSFL has almost half less
communication overhead than SL and SFL in each scenario
since it only includes half number of UEs for split training
and the other half number of UEs for federated training.
In Fig. 7(b), the total communication overhead per round
when training on AlexNet with different distributed learning
algorithms is shown. In this case, We can see that FL is less
communication efficient than SL and SFL when the number of
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Fig. 8. Performance comparisons of different UE selection schemes, N =
30,K = 3, on non-IID data, λl = λc = 0.99, β = 0.5

UEs increased to 100, while it is more communication efficient
than SL and SFL when training on Net shown in Fig. 6 (b).

C. Performance Comparisons of UE Selection Schemes

In this section, the learning accuracy performance of our
proposed MAB-BC-BN2 UE selection scheme is evaluated
over the non-IID and imbalanced data in wireless HSFL
algorithm and wireless FL algorithm. We set N = 30, τ = 5
and b = 64. We consider two non-IID data distribution
settings; 1) For non-IID, it follows the similar settings in [5],
where the dataset is first sorted by digit label, and it is divided
into 60 shards of size 1000, and then each of 30 UEs is
assigned with 2 shards. 2) For Dirichlet-nonIID, the whole
dataset is partitioned among 30 UEs following the Dirichlet
distribution Dir(αd) [32], where smaller αd indicates larger
data heterogeneity across UEs. We set αd = 0.01. 3) For
Dirichlet-ImD, we also construct the imbalanced data partition
among 30 UEs using this Dirichlet distribution Dir(αd, αimd),
where smaller αimd indicates the dataset size across UEs is
more imbalanced. We set αd = 0.1, αimd = 2.

Fig. 8 plots the test accuracy of different UE selection
schemes in wireless FL and HSFL algorithms. In both FL
and HSFL, we can observe that the BN2 UE selection scheme
achieves the best test accuracy performance because it takes an
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Fig. 9. Test accuracy of different UE selection schemes with HSFL on
Dirichlet-nonIID and Dirichlet-ImD data, N = 30,K = 3,Ks = 2,
λl = λc = 0.99, β = 0.5
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Fig. 10. Test accuracy performance of HSFL with MAB-BC-BN2 scheme
on non-IID data over parameters KS , N = 100,K = 10, β = 0.9

extra round to estimate the importance of local model updates
of all the UEs, so that the BS can select a subset of UEs
with the largest local model updates to participate in training
in each round. In contrast, the BC UE selection scheme has
worst learning performance, since it always selects the UEs
with the best channel qualities and neglects the importance
of their local model updates. The MAB-BC-BN2 scheme has
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Fig. 11. Test accuracy performance of HSFL with MAB-BC-BN2 scheme
on non-IID data over parameters β, N = 30,K = 3,KS = 2.

similar test accuracy performance as the BN2 scheme, which
jointly considers both channel conditions and the importance
of local model updates. The MAB-BN2 and MAB-BC UE
selections schemes are shown with lower test accuracy than
the MAB-BC-BN2 scheme. This is because in MAB-BN2,
the selected UEs with large local model updates may fail to
upload the local model updates due to bad channel conditions.
And in MAB-BC scheme, the selected UEs with good channel
conditions may have low local model updates. Note that MAB-
BC has better performance than BC scheme, this is because
MAB-BC adopts exploitation-exploration rule that enables it
to explore the UEs with less optimal channel conditions. It
then increases the chance to include the UEs with larger local
model updates for training.

In Fig. 9, we compare test accuracy performances of differ-
ent UE selection schemes in wireless HSFL algorithm using
Dirichlet-nonIID and Dirichlet-ImD data. The comparisons of
different UE selection schemes follow similar trend as Fig.
8 (b) using non-IID data. In Fig. 9 (a), the test accuracy
performances of all the UE selection schemes are worse than
Fig. 8 (b) due to larger heterogeneity of dataset over all the
UEs. However, the test accuracy of UE selection schemes in
Fig. 9 (b) shows better performance because the dataset across
UEs is less heterogeneous even it’s imbalanced.

Fig. 10 plots the test accuracy of wireless HSFL algorithm
with MAB-BC-BN2 UE selection scheme using non-IID data
for various numbers of split training UEs Ks. Compared to
FL and SFL, the HSFL algorithm achieves better test accuracy
performance and its superiority is increasing with increasing
the number of split training UEs, KS . In Fig. 11, we examine
the impact of balance factor β in MAB-BC-BN2 scheme on
HSFL learning performance in terms of test accuracy. We can
see that β = 0.5 has the best learning performance in our
simulated UAV networks, which reveals that selecting the UEs
that satisfying the lowest SNR requirements and with larger
local model updates will facilitate the improvement of test
accuracy performance. In practice, if the dataset over the UEs
is on IID, each user would have similar local model updates,
in this case, more weight could be put on the channel qualities,
that is, β can be set as a smaller value. On the other hand,
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if the dataset over the UEs is on non-IID, more weight could
be put on the significance of local model updates to get better
convergence performance.

VI. CONCLUSION

In this paper, we proposed a novel distributed learning ar-
chitecture, namely hybrid split and federated learning (HSFL)
algorithm, which adopts the parallel model training mechanism
of federated learning (FL) and model splitting structure of split
learning (SL). By applying our HSFL algorithm in wireless
UAV networks, our results demonstrated it achieved higher
learning accuracy than FL, and less communication overhead
than SL under independent and identically distributed (IID)
and non-IID data. Our results also revealed the learning
accuracy performance of HSFL algorithm can be improved
with increasing the number of split training UEs. We also
provided convergence analysis for wireless HSFL algorithm
under non-IID data with random UE selection scheme. To
improve the learning performance of our proposed HSFL
algorithm in wireless networks under limited bandwidth and
dynamic channel conditions, we developed a Multi-Arm Ban-
dit (MAB) based best channel (BC) and best 2-norm (BN2)
(MAB-BC-BN2) UE selection scheme based on discounted
MAB algorithm to select the UEs with larger local model
updates and better channel qualities in each round. Our results
have shown that MAB-BC-BN2 UE selection scheme achieved
better learning accuracy performance compared to BC, MAB-
BC and MAB-BN2 under non-IID, Dirichlet-non-IID and
Dirichlet-Imbalanced data.
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APPENDIX A

We analyze the proposed HSFL scheme in the setting of par-
tial UEs participation on non-IID data in this Section. In this
scenario, the BS randomly selects a subset of UEs K according
to the sampling schemes (like BC, BN2, or MAB-based UE

selection scheme). We define gt =
N∑

n=1
png

n
t (ω

n
t , ξ

n
t ) and

ḡt =
N∑

n=1
pnḡn

t (ω
n
t ), thus, Egt = ḡt.

First, from (26), we bound the average of the terms
A1, A2 and A3. They are explained in three Lemmas where
the proof of each is included.

Lemma 1. To bound A3, Let ENt
denote expectation over the

UE selection randomness at the round t. We have

ENt
[ωt+1] = υt+1 (27)

from which it follows that

ENt
[⟨ωt+1 − υt+1,υt+1 − ω∗⟩] = 0 (28)

Proof. Due to the randomness of the UE selection policy, it
has

ENt
[
1

K

∑
n∈Nt

ωn
t ] =

(
N−1
K−1

)
K
(
N
K

) N∑
n=1

ωn
t =

1

N

N∑
n=1

ωn
t (29)

Lemma 2. To bound A1, we have

E ∥ωt+1 − υt+1∥2 ≤ N −K

KN(N − 1)
η2t (4N − 2NS(NS − 1))G2

(30)

Proof. It’s following as in (31),
by using the conditions (1) E ∥X − EX∥2 = E∥X∥2 −

∥EX∥2 and
∥∥∥∥ N∑
n=1

bn

∥∥∥∥2 ≤ N
N∑

n=1
∥bn∥2

(2) P(n ∈ Nt+1) =
K
N and P(n, j ∈ Nt+1) =

K(K−1)
N(N−1) ,

(3)
∑

n∈[N ]

∥∥υn
t+1 − υt+1

∥∥2 +∑
n ̸=j

〈
υn
t+1 − υt+1,υ

j
t+1 − υt+1

〉
= 0

Lemma 3. To bound A2, we have the equation (32)

Proof. From (33), we bound the three terms B1, B2 and B3.
Note that B3 = 0 because the

ENt
[⟨ωt − ω∗ − ηtḡt, ηtgt − ηtḡt⟩] = 0.

For B1, we use the similar steps as in [24], [26] and get

B1 = ∥ωt − ω∗ − ηtḡt∥2

≤ (1− ηtµ)∥ωn
t − ω∗∥2 + 2

N∑
n=1

pn∥ωt − ωn
t ∥

2
+ 6ℓη2tΦ

(34)
For B2, where E ∥gt − ḡt∥2 shows the variance of the

stochastic gradients in UE un and it is bounded by δ2n, so
it’s bounded following the steps in (35)

E ∥gt − ḡt∥2 = E

∥∥∥∥∥
N∑

n=1

pn(∇Ln(ω
n
t , ξ

n
t )−∇Ln(ω

n
t ))

∥∥∥∥∥
2

=

N∑
n=1

p2nE ∥(∇Ln(ω
n
t , ξ

n
t )−∇Ln(ω

n
t ))∥

2

≤
N∑

n=1

p2nδ
2
n

(35)
Now, we can bound E ∥ῡt+1 − ω∗∥2 as shown in (36).
Further, F can be bounded following in (37)
Therefore, EA2 is finally bounded by (38)

Based on the results of Lemma 1, 2 and 3, we can finally
get

E ∥ωt+1 − ω∗∥2 ≤ (1− ηtµ)E ∥ωt − ω∗∥2 + η2tW (39)

where W =
N∑

n=1
p2nδ

2
n + 6ℓΦ + 8η2tG

2(1 − NS(NS−1)
2N ) +

N−K
K(N−1) (4N − 2NS(NS − 1))G2
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∥ωt+1 − ω∗∥2 = ∥ωt+1 − υt+1 + υt+1 − ω∗∥2

= ∥ωt+1 − υt+1∥2︸ ︷︷ ︸
A1

+ ∥υt+1 − ω∗∥2︸ ︷︷ ︸
A2

+2 ⟨ωt+1 − υt+1,υt+1 − ω∗⟩︸ ︷︷ ︸
A3

(26)
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∥∥∥∥∥ 1
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E
∥∥υt+1 − ω∗∥∥2 ≤ (1− ηtµ)∥ωn
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2
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EA2 = E
∥∥υt+1 − ω∗∥∥2

≤ (1− ηtµ)∥ωn
t − ω∗∥2 + η2t (

N∑
n=1

p2nδ
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n + 6ℓΦ+ 8η2tG

2(1− NS(NS − 1)
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(38)

By defining ∆t+1 = E ∥ωt+1 − ω∗∥2, we have

∆t+1 ≤ (1− ηtµ)∆t + η2tW (40)

By setting ∆t ≤ v
ι+t , ηt = ϱ

t+ι with ϱ> 1
µ and ι>0, this

can be proved through induction method.
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