posted on 2016-10-21, 11:05authored byDirk Backes, R. Hall, Michael Pepper, Harvey Beere, David A. Ritchie, Vijay Narayan
We investigate the striking absence of strong localisation observed in mesoscopic twodimensional electron gases (2DEGs) (Baenninger et al 2008 Phys. Rev. Lett. 100 016805, Backes et al 2015 arXiv:1505.03444) even when their resistivity h/e2. In particular, we try to understand whether this phenomenon originates in quantum many-body effects, or simply percolative transport through a network of electron puddles. To test the latter scenario, we
measure the low temperature (low-T) transport properties of long and narrow 2DEG devices in which percolation effects should be heavily suppressed in favour of Coulomb blockade. Strikingly we find no indication of Coulomb blockade and that the high-ρ, low-T transport is exactly similar to that previously reported in mesoscopic 2DEGs with different geometries. Remarkably, we are able to induce a ‘metal’-insulator transition (MIT) by applying a perpendicular magnetic field B. We present a picture within which these observations fit into
the more conventional framework of the 2D MIT.
Funding
Leverhulme Trust, UK and the Engineering and Physical Sciences Research Council
(EPSRC), UK.
History
School
Science
Department
Physics
Published in
Journal of Physics: Condensed Matter
Volume
28
Issue
1
Pages
01LT01 - 01LT01
Citation
BACKES, D. ... et al, 2015. ‘Metal’-like transport in high-resistance, high aspect ratio two-dimensional electron gases. Journal of Physics: Condensed Matter, 28 (1), 01LT01.
This work is made available according to the conditions of the Creative Commons Attribution 3.0 Unported (CC BY 3.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/by/3.0/
Publication date
2015
Notes
This is an Open Access Article. It is published by IOP under the Creative Commons Attribution 3.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/3.0/