Loughborough University
Browse

k-NDDP: an efficient anonymization model for social network data release

Download (2.75 MB)
journal contribution
posted on 2024-09-06, 12:46 authored by Shafaq Shakeel, Adeel Anjum, Alia AsheralievaAlia Asheralieva, Masoom Alam
With the evolution of Internet technology, social networking sites have gained a lot of popularity. People make new friends, share their interests, experiences in life, etc. With these activities on social sites, people generate a vast amount of data that is analyzed by third parties for various purposes. As such, publishing social data without protecting an individual’s private or confidential information can be dangerous. To provide privacy protection, this paper proposes a new degree anonymization approach k-NDDP, which extends the concept of k-anonymity and differential privacy based on Node DP for vertex degrees. In particular, this paper considers identity disclosures on social data. If the adversary efficiently obtains background knowledge about the victim’s degree and neighbor connections, it can re-identify its victim from the social data even if the user’s identity is removed. The contribution of this paper is twofold. First, a simple and, at the same time, effective method k–NDDP is proposed. The method is the extension of k-NMF, i.e., the state-of-the-art method to protect against mutual friend attack, to defend against identity disclosures by adding noise to the social data. Second, the achieved privacy using the concept of differential privacy is evaluated. An extensive empirical study shows that for different values of k, the divergence produced by k-NDDP for CC, BW and APL is not more than 0.8%, also added dummy links are 60% less, as compared to k-NMF approach, thereby it validates that the proposed k-NDDP approach provides strong privacy while maintaining the usefulness of data.

History

School

  • Science

Department

  • Computer Science

Published in

Electronics

Volume

10

Issue

19

Publisher

MDPI AG

Version

  • VoR (Version of Record)

Rights holder

© The Authors

Publisher statement

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Acceptance date

2021-06-15

Publication date

2021-10-08

Copyright date

2021

eISSN

2079-9292

Language

  • en

Depositor

Dr Alia Asheralieva. Deposit date: 29 May 2024

Article number

2440

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC