Loughborough University
Browse
FIg.2_US_spectral_movie.avi (680.78 kB)

Terahertz nonlinear ghost imaging via plane decomposition: Towards near-field micro-volumetry: Fig.2. US spectral movie

Download (680.78 kB)

Terahertz time-domain imaging targets the reconstruction of the full electromagnetic morphology of an object. In this spectral range, the near-field propagation strongly affects the information in the space-time domain in items with microscopic features. While this often represents a challenge, as the information needs to be disentangled to obtain high image fidelity, here we show that such a phenomenon can enable three-dimensional microscopy. Specifically, we investigate the capability of the time-resolved nonlinear ghost imaging (TNGI) methodology to implement field-sensitive micro-volumetry by plane decomposition. We leverage the temporally-resolved, field-sensitive detection to ‘refocus’ an image plane at an arbitrary distance from the source, which defines the near-field condition, and within a microscopic sample. Since space-time coupling rapidly evolves and diffuses within subwavelength length scales, our technique can separate and discriminate the information originating from different planes at different depths. Our approach is particularly suitable for objects with sparse micrometric details. Building upon this principle, we demonstrate complex, time-domain volumetry resolving internal object planes with sub-wavelength resolution, discussing the range of applicability of our technique. 

Funding

Time-Resolved Nonlinear Ghost Imaging

European Research Council

Find out more...

History

School

  • Science

Department

  • Physics

Usage metrics

    Physics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC