posted on 2006-09-25, 11:27authored byHongmei He, Ondrej Sykora
In the outerplanar (other alternate concepts are circular or one-page) drawing, one places vertices of a n-vertex m-edge connected graph G along a circle,
and the edges are drawn as straight lines. The minimal number of crossings over all outerplanar drawings
of the graph G is called the outerplanar (circular, convex, or one-page) crossing number of the graph G. To find a drawing achieving the minimum crossing number is an NP-hard problem. In this work we investigate the outerplanar crossing number problem with a Hopfield neural network model, and improve the convergence of the network by using the Hill Climbing
algorithm with local movement. We use two kinds of
energy functions, and compare their convergence. We
also test a special kind of graphs, complete p-partite
graphs. The experimental results show the neural network model can achieve crossing numbers close to the
optimal values of the graphs tested.
History
School
Science
Department
Computer Science
Pages
185482 bytes
Citation
HE and SÝKORA, 2006. A Hopfield neural network model for the outerplanar crossing number problem. IN: Proceedings of the International MultiConference of Engineers and Computer Scientists 2006, (IMECS '06), June 20 - 22, 2006, Hong Kong