Loughborough University
Browse
0501076.pdf (185.07 kB)

Buckyball quantum computer: realization of a quantum gate

Download (185.07 kB)
preprint
posted on 2006-06-05, 12:01 authored by M.S. Garelli, Feodor Kusmartsev
We have studied a system composed by two endohedral fullerene molecules. We have found that this system can be used as good candidate for the realization of Quantum Gates. Each of these molecules encapsules an atom carrying a spin, therefore they interact through the spin dipole interaction. We show that a phase gate can be realized if we apply static and time dependent magnetic fields on each encased spin. We have evaluated the operational time of a pi-phase gate, which is of the order of ns. We made a comparison between the theoretical estimation of the gate time and the experimental decoherence time for each spin. The comparison shows that the spin relaxation time is much larger than the pi-gate operational time. Therefore, this indicates that, during the decoherence time, it is possible to perform some thousands of quantum computational operations. Moreover, through the study of concurrence, we get very good results for the entanglement degree of the two-qubit system. This finding opens a new avenue for the realization of Quantum Computers.

History

School

  • Science

Department

  • Physics

Pages

189513 bytes

Publication date

2005

Notes

This is a pre-print. It is also available at: http://arxiv.org/abs/quant-ph/0501076.

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC