0603467.pdf (97.98 kB)
0/0

Comment on 'Hysteresis, Switching, and Negative Differential Resistance in Molecular Junctions: a Polaron Model', by M. Galperin, M.A. Ratner, and A. Nitzan, Nano Lett. 5, 125 (2005)

Download (97.98 kB)
preprint
posted on 05.04.2006 by A.S. Alexandrov, A.M. Bratkovsky
It is shown that the "hysteresis" in a polaron model of electron transport through the molecule found by M.Galperin et al. [Nano Lett. 5, 125 (2005)] is an artefact of their "mean-field" approximation. The reason is trivial: after illegitimate replacement $\hat{n}^{2}=\hat{n}n_{0},$ where \hat{n} is the electron number operator, n_{0} the average molecular level occupation, Galperin et al. obtained non-physical dependence of a renormalized molecular energy level on the non-integer mean occupation number n_{0} (i.e. the electron self-interaction) and the resulting non-linearity of current. The exact theory of correlated polaronic transport through molecular quantum dots (MQDs) that we proposed earlier [Phys. Rev. B67, 235312 (2003)] proved that there is no hysteresis or switching in current-voltage characteristics of non-degenerate, d=1, or double degenerate, d=2, molecular bridges, contrary to the mean-field result. Switching could only appear in multiply degenerate MQDs with d>2 due to electron correlations.

History

School

  • Science

Department

  • Physics

Pages

100335 bytes

Publication date

2006

Notes

This is a pre-print. It is also available at: http://arxiv.org/abs/cond-mat/0603467.

Language

en

Exports

Logo branding

Exports