Loughborough University
Browse
- No file added yet -

Complex resonances and trapped modes in ducted domains

Download (2.1 MB)
preprint
posted on 2006-02-22, 15:26 authored by Yuting Duan, W. Koch, Christopher LintonChristopher Linton, Maureen McIver
Due to radiation losses, resonances in open systems are generally complex valued. However, near symmetric, centred objects in ducted domains, or in periodic arrays, so-called trapped modes can exist below the cut-off frequency of the first non-trivial duct mode. These trapped modes have no radiation loss and correspond to real-valued resonances. Above the first cut-off frequency isolated trapped modes exist only for specific parameter combinations. These isolated trapped modes are termed embedded, because their corresponding eigenvalues are embedded in the continuous spectrum of an appropriate differential operator. Trapped modes are of considerable importance in applications because at these parameters the system can be excited easily by external forcing. In the present paper directly computed embedded trapped modes are compared with numerically obtained resonances for several model configurations. Acoustic resonances are also computed in two-dimensional models of a butterfly and ball-type valve as examples of more complicated geometries.

History

School

  • Science

Department

  • Mathematical Sciences

Pages

2204143 bytes

Publication date

2006

Notes

This is a pre-print.

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC