linton2.pdf (1.26 MB)
Download file

Effects of porous covering on sound attenuation by periodic arrays of cylinders

Download (1.26 MB)
preprint
posted on 15.08.2005, 12:13 authored by O. Umnova, Keith Attenborough, Christopher LintonChristopher Linton
The acoustic transmission loss of a finite periodic array of long rigid cylinders, without and with porous absorbent covering, is studied both theoretically and in the laboratory. A multiple scattering model is extended to allow for the covering and its acoustical properties are described by a single parameter semi-empirical model. Data from laboratory measurements and numerical results are found to be in reasonable agreement. These data and predictions show that porous covering reduces the variation of transmission loss with frequency due to the stop/pass band structure observed with an array of rigid cylinders with similar overall radius and improves the overall attenuation in the higher frequency range. The predicted sensitivities to covering thickness and effective flow resistivity are explored. It is predicted that a random covered array also gives better attenuation than a random array of rigid cylinders with the same overall radius and volume fraction.

History

School

  • Science

Department

  • Mathematical Sciences

Pages

1325184 bytes

Publication date

2005

Notes

This is a pre-print.

Language

en

Usage metrics

Keywords

Exports