halburd4.pdf (368.39 kB)
Download file

Finite-order meromorphic solutions and the discrete painleve equations

Download (368.39 kB)
preprint
posted on 16.08.2005, 13:13 by R.G. Halburd, R.J. Korhonen
Let w(z) be a finite-order meromorphic solution of the second-order difference equation w(z+1)+w(z-1) = R(z,w(z)) (1) where R(z,w(z)) is rational in w(z) and meromorphic in z. Then either w(z) satisfies a difference linear or Riccati equation or else equation (1) can be transformed to one of a list of canonical difference equations. This list consists of all known difference Painleve equation of the form (1), together with their autonomous versions. This suggests that the existence of finite-order meromorphic solutions is a good detector of integrable difference equations.

History

School

  • Science

Department

  • Mathematical Sciences

Pages

377236 bytes

Publication date

2005

Notes

This is a pre-print.

Language

en

Usage metrics

Keywords

Exports