posted on 2006-02-03, 13:11authored byRoger Grimshaw
In inviscid fluid flows instability arises generically due to a resonance between two wave modes. Here, it is shown that the structure of the weakly nonlinear regime depends crucially on whether the modal structure coincides, or remains distinct, at the resonance point where the wave phase speeds coincide. Then in the weakly nonlinear, long-wave limit the generic model consists either of a Boussinesq equation, or of two coupled Korteweg-de Vries equations, respectively. For short waves, the generic model is correspondingly either a nonlinear Klein-Gordon equation for the wave envelope, or a pair of coupled first-order envelope equations.