00-12.pdf (209.45 kB)
Download fileModels for instability in inviscid fluid flows, due to a resonance between two waves
preprint
posted on 2006-02-03, 13:11 authored by Roger GrimshawIn inviscid fluid flows instability arises generically due to a resonance between two wave modes. Here, it is shown that the structure of the weakly nonlinear regime depends crucially on whether the modal structure coincides, or remains distinct, at the resonance point where the wave phase speeds coincide. Then in the weakly nonlinear, long-wave limit the generic model consists either of a Boussinesq equation, or of two coupled Korteweg-de Vries equations, respectively. For short waves, the generic model is correspondingly either a nonlinear Klein-Gordon equation for the wave envelope, or a pair of coupled first-order envelope equations.
History
School
- Science
Department
- Mathematical Sciences
Pages
214479 bytesPublication date
2000Notes
This is a pre-print.Language
- en