Loughborough University
Browse
- No file added yet -

Normal forms for symplectic maps with twist singularities.

Download (1.16 MB)
preprint
posted on 2005-11-10, 11:12 authored by Holger R. Dullin, A.V. Ivanov, J.D. Meiss
We derive a normal form for a near-integrable, four-dimensional symplectic map with a fold or cusp singularity in its frequency mapping. The normal form is obtained for when the frequency is near a resonance and the mapping is approximately given by the time-T mapping of a two-degree-of freedom Hamiltonian flow. Consequently there is an energy-like invariant. The fold Hamiltonian is similar to the well-studied, one-degree-of freedom case but is essentially nonintegrable when the direction of the singular curve in action does not coincide with curves of the resonance module. We show that many familiar features, such as multiple island chains and reconnecting invariant manifolds, are retained even in this case. The cusp Hamiltonian has an essential coupling between its two degrees of freedom even when the singular set is aligned with the resonance module. Using averaging, we approximately reduced this case to one degree of freedom as well. The resulting Hamiltonian and its perturbation with small cusp-angle is analyzed in detail.

History

School

  • Science

Department

  • Mathematical Sciences

Pages

1221319 bytes

Publication date

2005

Notes

This is a pre-print.

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC