Loughborough University
Browse

Wave group dynamics in weakly nonlinear long-wave models

Download (266.85 kB)
preprint
posted on 2006-02-06, 17:30 authored by Roger Grimshaw, Dmitry Pelinovsky, Efim N. Pelinovsky, Tatiana G. Talipova
Wave group dynamics is studied in the framework of the extended Korteweg-de Vries equation. The nonlinear Schrodinger equation is derived for weakly nonlinear wave packets, and the condition for modulational instability is obtained. It is shown that wave packets are unstable only for a positive sign of the coefficient of the cubic nonlinear term in the extended Korteweg-de Vries equation, and for a high carrier frequency. At the boundary of this parameter space, a modified nonlinear Schrodinger equation is derived, and its steady-state solutions, including an algebraic soliton, are found. The exact breather solution of the extended Korteweg-de Vries equation is analyzed. It is shown that in the limit of weak nonlinearity it transforms to a wave group with an envelope described by soliton solutions of the nonlinear Schrodinger equation and its modification as described above. Numerical simulations demonstrate the main features of wave group evolution and show some differences in the behavior of the solutions of the extended Korteweg-de Vries equation, compared with those of the nonlinear Schrodinger equation.

History

School

  • Science

Department

  • Mathematical Sciences

Pages

273254 bytes

Publication date

2000

Notes

This is a pre-print. The definitive version: GRIMSHAW, PELINOVSKY, PELINOVSKY AND TALIPOVA, 2001. Wave group dynamics in weakly nonlinear long-wave models. Physica D, 159(1-2), pp.35-57.

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC