A condensation theory is presented, that enables the calculation of the rate of vapour transfer with its associated effects on temperature and total heat transfer, inside a clothing ensemble consisting of underclothing, enclosed air, and outer garment. The model is experimentally tested by three experiments: I impermeable garments worn by subjects with and without plastic foil around the skin, blocking sweat evaporation underneath the clothing; 2 comparison of heat loss in impermeable and semipermeable garments and the associated discomfort and strain; 3. subjects working in impermeable garments in cool and warm environments at two work rates, with and without external radiation, until tolerance. The measured heat exchange and temperatures are calculated with satisfying accuracy by the model (mean error - 11, sd - 10 W/m2 for heat flows and .3 and .9 °C for temperatures, respectively). A numerical analysis shows that for total heat loss the major determinants are vapour permeability of the outer garment, skin vapour concentration, air temperature and clothing insulation. In the cold the condensation mechanism may completely compensate for the lack of permeability of the clothing as far as heat dissipation is concerned, but in the heat impermeable clothing is more stressful.
Funding
TNO - Institute for Perception
History
School
Design
Citation
LOTENS, W.A., VAN DE LINDE, F.J.G. and HAVENITH, G., 1990. The effect of condensation in clothing on heat transfer. Soesterberg, NL: TNO Institute for Perception, 40 pp.