posted on 2018-09-21, 09:20authored byKonstantia Koutsomyti
The growing demand for voice-over-packer (VoIP) services and multimedia-rich
applications has made increasingly important the efficient, real-time implementation of
low-bit rates speech coders on embedded VLSI platforms. Such speech coders are
designed to substantially reduce the bandwidth requirements thus enabling dense multichannel
gateways in small form factor. This however comes at a high computational cost
which mandates the use of very high performance embedded processors.
This thesis investigates the potential acceleration of two major ITU-T speech coding
algorithms, namely G.729A and G.723.1, through their efficient implementation on a
configurable extensible vector embedded CPU architecture. New scalar and vector ISAs
were introduced which resulted in up to 80% reduction in the dynamic instruction count
of both workloads. These instructions were subsequently encapsulated into a parametric,
hybrid SISD (scalar processor)–SIMD (vector) processor. This work presents the research
and implementation of the vector datapath of this vector coprocessor which is tightly-coupled
to a Sparc-V8 compliant CPU, the optimization and simulation methodologies
employed and the use of Electronic System Level (ESL) techniques to rapidly design
SIMD datapaths.
Funding
EPSRC.
History
School
Mechanical, Electrical and Manufacturing Engineering
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
2007
Notes
A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy at Loughborough University.