posted on 2018-07-18, 11:25authored bySimon T. Bee
This thesis investigates human behaviour when controlling Six Degree of Freedom (DoF)
Interfaces. A substantial literature review forms the basis for the design of an
experimental framework. An assertion is made which states that effective control
interfaces will support a broad range of activity in a virtual environment. A review of
motor control facilitates the design of a set of appropriate tasks and measures
A series of seven experiments are presented. The series of experiments are [sic] partitioned into three
studies: Object Rotation in 3DoF (three experiments); Object Manipulation in 6DoF (three experiments); Egomotion in a 3D environment (one experiment).
A new rotation controller which maps 2D mouse input to 3DoF rotation is designed and
implemented. It is then compared against an "integrated" 6DoF controller. The purpose
of these studies is to establish an experimental paradigm that will enable designers to
examine operator strategies with input devices and interfaces.
From the experiments described in the studies a number of conclusions are made: (1) operator strategies cannot be identified by single measures—rather a variety of
measures help disambiguate singular performance scores; (2) control strategies can be employed due to the characteristics of one interface component but can leak into behaviour with other interface components which are related in terms of the task; (3) a variety of tasks must be employed to develop a rich picture of operator behaviour
with a particular interface; (4) certain characteristics of an interface can mask other performance issues when comparing interfaces; (5) travel can be analysed with a traditional tracking task; (6) the control structure of the interface must match the control structure of the task domain—if this is exceeded then in some cases performance can actually be degraded.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
1999
Notes
A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy at Loughborough University.