Thesis-2005-Crumpling.pdf (3.6 MB)

A linker approach to heterocyclic amino acids

Download (3.6 MB)
posted on 29.10.2018 by Lisa J. Crumpling
Polypeptide Nucleic Acids, PNAs, are analogues of DNA and have the potential to bind to DNA by base-pairing and hence act as therapeutic agents. Amino acids carrying heterocycles in their side-chains are valid targets as natural products and as components of these potential therapeutic agents (PNAs) for use in living organisms. The aim of this investigation was to synthesise a range of heterocyclic amino acids, that could be used in the formation of PNAs. The proteinogenic amino acids, serine and cysteine and the unnatural amino acids, homocysteine, 2,3-diaminopropionic acid and 2,4-diaminobutyric acid, have been used in the formation of said heterocyclic amino acids via a C–X bond (where X=C, S, O or N) in a linker chain. It was decided to approach the synthesis of heterocyclic amino acids by way of a linker approach, joining the ready-formed heterocycle with an amino acid. Once the amino acids had been suitably protected several different methods were attempted in order to form heterocyclic amino acids. To form a carbon–carbon (X=C) bond in the linker chain, radical and organocuprate conjugate addition reactions and hydroboration and metathesis coupling were attempted. The formation of a linker containing a carbon–heteroatom bond (X=S, O or N) was investigated using a substitution approach. [Continues.]



  • Science


  • Chemistry


© Lisa Jane Crumpling

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:

Publication date



A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy at Loughborough University.




Logo branding