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Abstract

The orchestration of Service Function Chain in multiple clouds calls for low-cost,

low-latency and scalability. In the existing literature, several techniques have been

proposed to meet these requirements. However, how to federate service chains

across geo-distributed clouds in light of these requirements remains open.

This thesis aims to study how to compose service chains across multiple clouds

by considering several factors such as domain autonomy, domain confidential in-

formation, scalability, deployment cost, end-to-end latency and dynamic traffic de-

mands. In particular, the proposed schemes in this thesis are devised to improve

the most crucial performance metrics: the deployment cost and the end-to-end

latency.

First, we propose a distributed architecture that jointly considers domain

autonomy, domain confidential information and scalability. This architecture

enables service chains across multiple administrative domains without revealing

sensitive network information such as the domain topology. The proposed archi-

tecture significantly reduces the deployment cost which consists of resource and

traffic routing costs. Moreover, the proposed architecture remarkably reduces the

execution time which suggests that it processes the SFC requests timely.

Second, the network traffic is dynamic in nature. To accommodate the varying

traffic demand in edge clouds, it is important to dynamically scale VNFs in an agile

and efficient manner by considering the resource scarcity at the edge. Hence, we

propose a bottleneck-aware VNF scaling and traffic routing algorithm to effectively

handle the incoming traffic. The proposed algorithm uses vertical and horizontal

scaling in light of the VNF category. The experimental results show that the

proposed algorithm efficiently shortens the end-to-end latency, improves the VNF

utilization rate and reduces the running time.
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Chapter 1

Introduction

The introduction chapter consists of four sections. Section 1.1 presents the mo-

tivation. Section 1.2 introduces the research aims and objectives. The original

contribution of this thesis is summarized in Section 1.3. Finally, Section 1.4 sum-

marizes the structural organization.

1.1 Motivation

Due to the emerging edge computing and Network Function Virtualization (NFV)

technologies, the network becomes increasingly fragmented when more and more

network operators join the market. With the ever-growing network administrat-

ive domains and applications, we envision that different kinds of networks such as

public cloud data centers, ISP networks and edge networks will span across numer-

ous domains in the future network. The end-user experience will increasingly rely

on the collaboration of these networks through resource sharing and cooperation.

As illustrated in Figure 1.1, networks consist of multiple domains which con-

tain public cloud data centers, ISP networks or edge clouds. Network operators

are notoriously known for restricting the network information exchange as doing

so could mean revealing their competitive business advantages. Similarly, distinct

business objectives of different network operators mean that they have proprietary

network policies and configurations which exacerbate the difficulty of domain fed-

eration. To deliver flexible and efficient network services across multiple network

domains, there is a need to devise a scalable architecture for service chaining. In

this thesis, scalability refers to not only the ability to incorporate a large number

of cloud data centers but also the capacity to accommodate time-varying traffic.

However, existing works primarily focus on either a centralized framework or an

inter-cloud federation. In centralized frameworks, it is assumed that a centralized

controller has full control and visibility of all domains which is not viable. Sim-

1
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Cloud Datacenter

Core NetworksISPs

Edge cloud Edge cloud Edge cloud Edge cloud

FW IDSClassifier

Figure 1.1: Use case: deploying service chains across multiple networks

ilarly, inter-cloud federation usually overlooks the domain autonomy and domain

confidential information. Furthermore, current service orchestration approaches

are often static and overlook the inherent nature of Service Functions (SFs). This

imposes significant limitations on the management of time-varying network traffic

and hence deteriorates the end-user experience. Although Software Defined Net-

working (SDN) and NFV reduce the management complexity of multiple clouds,

there is still no efficient mechanism for the federation of different domains. Hence,

this thesis is motivated to fill the gap in service chain federation with respect to

the scalability.

To improve the system scalability, it is also crucial to study the scalability

of Virtual Network Functions (VNFs). This is because the network traffic is

time-varying in nature and hence requires elastic solutions for handling dynamics.

VNF scaling technique is a promising approach to achieve minimum perform-

ance degradation and minimum resource utilization in light of the time-varying

traffic workloads. To improve the system scalability, two challenges need to be

addressed. We need a placement policy to determine the priority of vertical and

horizontal scaling, aiming to achieve optimal performance for Service Function
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Vertical Scaling Horizontal Scaling

IDS Flow Monitor Firewall Load Balancer

Figure 1.2: An example of VNF scaling

Chains (SFCs). We also need a traffic steering policy that determines how to

route traffic flows between multiple VNF instances.

Figure 1.2 illustrates an example of vertical scaling and horizontal scaling.

Vertical scaling refers to adding more physical resources to a single VNF instance

to improve the processing capacity. Horizontal scaling is creating more than one

copy of VNF instances and distributing the network traffic between them.

Keep the above factors in mind, there are a variety of limitations of existing

works. Most existing approaches [1], [2], [3] use a centralized controller which

assumes that the controller has full control and visibility of all domains. Such a

centralized framework cannot alleviate the problem of domain autonomy, domain

confidential information and scalability because all the control and information

must be given to the centralized controller. Indeed, there are also some approaches

[4], [5], [6] that employ a distributed framework to handle the federation of multiple

domains. Similarly, many works [7], [8] use the scaling technique to improve the

network performance. Meanwhile, a wide range of works [9], [10], [11] reported that

the VNF performance is bottlenecked by different types of resources (i.e., CPU,

memory or bandwidth). Nevertheless, most of the existing approaches largely

overlook the VNF bottlenecks and the resource scarcity. Hence, these approaches

cannot jointly achieve excellent performance, time efficiency and scalability.

Therefore, we are motivated to propose a fully-fledged architecture that effi-

ciently federates multiple network domains. In particular, there are two challenges

we need to consider.

� First, it is very challenging to jointly consider domain autonomy, domain

confidential information and scalability for service chain federation. Domain

autonomy refers to that every domain is allowed to implement independent

algorithms based on their resource capacities and management policies. Do-

main confidential information, in this thesis, refers to the network inform-
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ation such as topology and network status. Scalability refers to not only

the network scale but also the ability to process the sheer volume of traffic

demand.

� The time-varying network traffic poses significant challenges to dynamic

SFCs. In particular, the key challenge lies in accommodating the fluctuat-

ing network traffic because network flows come and leave at any time. Also,

most existing works ignore the resource scarcity in edge clouds. Hence, we

seek a dynamic and resource-efficient scaling approach for SFC management.

1.2 Aims and Objectives

Motivated by the aforementioned factors, this thesis aims to propose two schemes

that build a federated and scalable architecture for SFCs. More specifically, the

aims of this thesis are as follows.

� This thesis aims to propose a full-fledged architecture that preserves system

scalability and domain autonomy. In light of the sheer volume of requests

and the increasing network scale, it is crucial to provide elastic and scalable

approaches for service chain federation. With more domains joining the

federation, it is vital to enable customized network policies and management

strategies as doing so could facilitate every party to optimize its business

objective.

� Due to the nature of network traffic, accommodating the time-varying flows

is an essential problem for the federated service chaining. To improve the

scalability in the VNF-level, this thesis also aims to dynamically handle the

fluctuation of the network traffic while minimizing the end-to-end delay.

To achieve the aforementioned aims, we proceed with the following steps.

� Investigate the existing schemes for scalable federation of service chains.

� Formulate mathematical models for SFC placement and flow routing prob-

lems.

� Devise a scalable architecture that efficiently copes with the increasing net-

work scale and time-varying traffic demands.

� Devise SFC placement algorithms that achieve near-optimal performance

and run in a fast manner.

� Implement the proposed schemes in NS3 and Mininet based testeds to demon-

strate the performance and the efficiency.
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1.3 Original Contributions

In this section, we summarize our contributions as follows.

� We have proposed a scalable architecture for service chaining that jointly

considers scalability and domain autonomy. We have formulated an Integer

Linear Programming (ILP) problem, aiming to minimize the deployment cost

of SFC requests. Then, we propose Distributed Federated Service Chaining

(DFSC) which significantly reduces the overall deployment cost. DFSC dis-

tributes the decision process to multiple peer controllers while reducing the

amount of required network information. The extensive experiments demon-

strate that DFSC significantly reduces the decision-making time, preserves

the domain autonomy and improves the scalability of the system. We imple-

mented DFSC and two benchmark approaches from the literature by using

not only a simulator NS3 but also an emulator Mininet. In this case, we

compare the performance of different testbeds to verify the performance of

DFSC.

� We have proposed a VNF scaling algorithm that considers the scalability in

the VNF-level. We have formulated an ILP problem which aims to minim-

ize the end-to-end delay in edge clouds. To handle the time-varying network

traffic, we propose a hybrid scaling approach. Experimental results show

that the proposed scheme reduces 70% execution time in a large-scale net-

work.

1.4 Thesis Organization

The remainder of the thesis is organized as follows.

Chapter 1 illustrates the motivations and aims of this thesis. This chapter

highlights the research gaps in the context of service chain federation, including

scalability, domain autonomy and confidential information. We show that existing

approaches disregard the system scalability as most of them use a centralized

controller to manage computing and network resources. Then, we demonstrate the

lack of considering the VNF bottlenecks and resource utilization when performing

VNF scaling in edge clouds. After that, we describe the overall aims and objectives

of this thesis and outline our contributions. Finally, an overview of this thesis is

described.

Chapter 2 introduces the background and key concepts of our research includ-

ing Network Function Virtualization, Service Function Chain, VNF scaling and

administrative domains.
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Chapter 3 summarizes the existing literature of service chain federation. This

chapter demonstrates related works in light of single-domain, multi-domain with

centralized architecture, multi-domain with distributed architecture and service

chain scaling. The state-of-the-art solutions in the service chaining are summar-

ized. These works aim to improve the system performance including end-to-end

latency, deployment cost, energy, resilience and etc.

Chapter 4 presents the system models. This chapter includes the physical

network model, the service function chain model, the affinity constraints, the

queueing theory to model the latency, the VNF scaling and flow routing. Also, all

the symbols and variables for the problem formulation are listed.

Chapter 5 provides a distributed scheme that significantly improves the sys-

tem scalability in the controller-level. The proposed Distributed Federated Ser-

vice Chaining approach (DFSC) distributes the decision-making process between

multiple controllers. The chapter demonstrates two variants of DFSC, i.e., coarse-

grained and fine-grained DFSC. Coarse-grained DFSC provides domain and tier

constraints for the SFC granularity while fine-grained DFSC provides these con-

straints for the VNF granularity. We formulate the SFC placement problem as

an Integer Linear Programming problem and prove that it is NP-hard. Extensive

simulation results suggest that DFSC remarkably shortens the decision-making

time by 70% and reduces the deployment cost by up to 20%.

Chapter 6 presents a hybrid scaling approach which remarkably improves the

scalability in the VNF-level. The proposed approach jointly considers the VNF

category and resource utilization. This approach aims to improve system scalab-

ility by considering the VNF category and resource utilization. We formulate an

Integer Linear Programming problem and prove its NP-hardness. The experi-

mental results demonstrate that the proposed algorithm significantly reduces the

resource usage while achieving near-optimal latency (9% more than the optimum).

Chapter 7 concludes the thesis. This chapter summarizes the proposed al-

gorithms and discusses the limitations of the proposed schemes. It also demon-

strates the future research directions in light of service chain federation.



Chapter 2

Background

In this chapter, we present the key concepts and background in federated service

chaining. We envision the widespread network function virtualization and service

function chaining as the essential building blocks in multi-domain networks. Also,

we present horizontal and vertical scaling because they are pervasive technologies

for dynamic SFC orchestration.

2.1 Network Function Virtualization

2.1.1 Definition

In the conventional paradigms of network service, network functions (e.g., firewall

or proxy) are usually implemented on the dedicated hardware middleboxes. Due

to the emergence of new service paradigms such as edge computing, in-network

computing and novel applications such as machine learning functions, hardware

middleboxes are facing severe challenges. First, hardware middleboxes are costly

due to the expenditure on design and production which significantly deteriorates

the revenue of service providers. Moreover, the rigid dedicated middleboxes must

be manually configured and managed which makes network management labor-

intensive. Therefore, the traditional network service paradigm imposes a variety

of limitations on service chain federation in the perspective of operational and

capital expenditures.

Network Function Virtualization (NFV), proposed by European Telecommu-

nications Standards Institute (ETSI) [12] in 2012, is a promising approach to

leverage software instances of network functions instead of dedicated hardware

implementations. In NFV, network services are delivered by a sequence of Vir-

tual Network Functions (VNF) that can run on virtual machines and containers.

In contrast to conventional hardware appliances, NFV uses virtualized network

functions hosted within virtual machines or containers running on Network Func-

7
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tion Virtualization Infrastructure (NFVI). NFVI refers to all the software and

hardware components that provide the environment for NFV deployment. Net-

work Function Virtualization Orchestrator (NFVO) is all functional blocks, data

repositories and interfaces that serve the purpose of NFVI and VNF manage-

ment. NFV decouples the network function from the dedicated hardware which

enables flexible and agile network management with significant decrease of ex-

penses. Conventional examples of NFV include firewalls, load balancers, network

address translation and etc.

Traffic flows traverse VNFs in a predefined order which is known as the Service

Function Chain (SFC). By leveraging the virtualization technologies, the requested

services can be deployed in a flexible and efficient manner. Furthermore, if the SFC

has been changed, VNFs can be added or deleted at a small cost. NFV technology

enables scalable and agile network services, resulting in a more efficient and timely

management paradigm. Hence, NFV could advocate service chain federation by

reducing the deployment cost and improving the network performance.
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managers
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VNF 1 VNF 2 VNF 3

Virtual 
computing

Virtual 
storage

Virtual 
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Virtualization layer

Computing 
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NFV management and orchestration

Hardware resources

Figure 2.1: The NFVI architecture

Figure 2.1 illustrates the NFVI architecture as defined by the European Tele-

communications Standards Institute (ETSI) [13]. The hardware resources include

computing, storage and network resources that provide processing, storage and
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connectivity capabilities for VNFs by a virtualization layer. The virtualization

layer abstracts the hardware resources and provides the virtualized infrastruc-

ture for the software. Examples of the virtualized layer include hypervisors and

container-based virtualization solutions.

2.1.2 NFV Orchestrator

NFV orchestrator is responsible for managing network services including instan-

tiation, scaling, life cycle and etc. The NFV orchestrator also performs resource

management and authorization to resource requests in the NFV.

2.1.3 VNF Managers

The VNF manager is responsible for the VNF lifecycle including instantiation,

update, scaling and termination. It also spawns other functions that are essential

for the entire VNF lifecycle. Moreover, it coordinates and reports events for other

NFVI components.

2.1.4 Virtual Infrastructure Manager

The Virtual Infrastructure Manager (VIM) performs controlling and managing of

VNFs in the control of VNFI. It manages the resources and performs resource

allocation of NFVI for VNFs. It also performs analysis of the NFVI perform-

ance and logs the events. Moreover, it collects and forwards performance and

measurement events.

2.2 Service Function Chain

Thanks to the rapid advances in network virtualization, network operators can now

deploy many network services upon the virtualized infrastructures by leveraging

VNFs. These VNFs replace the dedicated hardware middleboxes such as load

balancers, firewalls, deep packet inspectors, intrusion detectors and etc.

Due to the emergence of edge computing and IoT, computation is shifting from

public cloud data centers to geo-distributed edge clouds, resulting in deploying the

computational and storage resources at the proximity of end-users. This can also

reduce the total end-to-end delay and the cost of service providers by reducing

the use of pricey WAN links. However, such trends also pose a significant chal-

lenge to the service function chaining. Since the network scale and the number of

requested services increase exponentially in multi-domain environments [14], it is

very challenging to coordinate the services.
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2.2.1 SFC Definition

Service Function Chain (SFC) is a set of abstract service functions in a predefined

order and the subsequent traffic steering [15]. An example of an abstract service

function is a “load balancer”. The term “service chain” and “service function

chain” are often used interchangeably. Also, a Service Function Path (SFP) is a

path that packets of a certain SFC must traverse.

2.2.2 SFC Architecture

Service Function Chain provides a method for deploying SFs in a manner of dy-

namic ordering and topological independence of SFs as well as the metadata ex-

change between participating parties. An SFC is an abstracted view of a service

at the high level that specifies the ordered set of required SFs. We can use an

SFC graph, as illustrated in Figure 2.2, to define an SFC architecture. An SFC

starts from the source node and ends at the target node.
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Figure 2.2: Service function chains in the data center

Figure 2.2 shows service function chains in data centers [16]. Access SFCs are

responsible for servicing traffic entering and leaving the data center while applic-

ation SFCs focus on servicing traffic destined to the application. A service chain

consists of multiple network functions such as Web Optimization Control (WOC),

Edge Firewall (EdgeFW), Monitoring (MON), Segment FW (SegFW), Applica-

tion Delivery Controller (ADC), Application FW (AppFW), Workload (WL/DB).
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Workload refers to a physical or virtual machine that performs a particular task

such as web servers, database servers.

Service providers embed a single access SFC and multiple application SFCs

for each end-user. Examples of access SFCs include VPN and WOC that support

security policies.

SFC includes 6 architectural principles.

� Topological independence: SFC deployment needs no change of the underlay

network forwarding topology.

� The service function paths are independent from the packet forwarding.

� Traffic that meets classification rules is steered according to a specific service

function path.

� Metadata and context data can be shared between SFs and between external

systems.

� The SFC architecture does not rely on the details of SFs.

� The creation, change and deletion of an SFC has no influence on other SFCs.

2.2.3 A List of VNFs

The table 2.1 illustrates a wide range of off-the-shelf VNFs. We use these VNFs

in our experimental sections to compose service chains.

2.3 VNF Scaling

2.3.1 VNF Definition

Virtual Network Function (VNF) runs particular network functions on virtual ma-

chines or containers in the NFV environment. VNF decouples network functions

from dedicated hardware devices with the help of a software layer. Common VNFs

include Network Address Translation (NAT), firewalls and routers. VNF increases

network scalability and agility. VNF also enables better use of network physical

resources. Other advantages include the reduction of power consumption and the

reduction of deployment cost. It is common to implement service chains using

VNF instances hosted on VMs or containers in a cloud computing platform. VNF

scaling is a promising technique to improve system scalability.
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Table 2.1: Examples of VNFs

VNFs Description

Firewall A network security function that monitors and filters in-
bound and outbound network traffic based on specific se-
curity policies.

NAT Network address translation. A network function that maps
an IP address space into another by changing the network
address in the packet header while packets traverse a traffic
routing device.

Load balancer A network function that distributes network traffic across a
number of servers. It improves the overall performance of
applications by mitigating the burden on servers.

Proxy An application that performs as an intermediary between
clients and servers.

IDS Intrusion detection system. A network function that monit-
ors the network in light of malicious events or policy viola-
tions.

Caching A network function that stores data to respond faster. The
data can be the result of an earlier task or a copy of data
stored elsewhere.

WAN-optimizer A network function that optimizes the data transfer across
the wide area networks (WAN).

2.3.2 Vertical Scaling

Vertical scaling (scaling-up) refers to adding more physical resourcs to a single

node, typically involving CPUs, memory or storage. In other words, this way of

scaling allows resizing of the virtual machine by changing the amount of CPU and

memory. Consequently, the processing capacity of the node increases. Vertical

scaling is limited by the resource capacity of a single server due to the physical

machine capacity.

2.3.3 Horizontal Scaling

On the other hand, horizontal scaling is adding or removing new VNF replicas

which is also known as scale-out and scale-in. Nevertheless, horizontal scaling may

lead to resource over-provisioning and under-utilization because different VNFs are

bottlenecked on different resources. Moreover, it is time-consuming to startup new

VNF instances which deteriorates the VNF performance.

2.3.4 Comparison of Vertical and Horizontal Scaling

Scaling period: Horizontal scaling approach is limited by the VM or container

startup time as it leverages VM or container as the scaling unit. Mao et al. [17]
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investigated the VM startup time of three common cloud providers, e.g., Mi-

crosoft Azure, Amazon EC2 and Rackspace. The average startup time of these 3

providers are 356.6 seconds, 96.6 seconds and 44.2 seconds, respectively. Hence,

horizontal scaling needs to be performed ahead of time to handle the time-varying

traffic demand. In contrast, vertical scaling dynamically adds more or less num-

ber of vCPUs and memory of the VM at runtime. WindRiver [18] reports that

it is possible to hotplug a CPU in about 40ms and unplug the CPU in around

20ms. Therefore, the vertical scaling time can be negligible compared with the

VM startup time.

Compatibility: VNF instances are usually bounded by at least one type of

resource, e.g., CPU, memory and network bandwidth. Hence, some VNFs cannot

improve their performance by vertical scaling. A potential solution is running

multiple instances and configuring them to handle a few flows.

Robustness: Vertical scaling can avoid instance overloading by adding more

computational resources and thus makes the instance resilient to failure. Multiple

static instances can be a single-point-of-failure when performing horizontal scaling.

However, for vertical scaling, the scalable VNF instance could be a single-point-

of-failure.

Management complexity: Horizontal scaling needs to schedule flows among

multiple VNF instances, resulting in data synchronization and load balancing.

Moreover, the placement of new instances needs to be timely decided. In contrast,

vertical scaling processes all the traffic in one VNF instance and thus reduces

the management complexity. In summary, vertical scaling has lower management

complexity than horizontal scaling.

2.4 Administrative Domains

Currently, service providers need to manually manage and configure the SFC [19].

Figure 2.3 shows a high-level view of the required components to manage SFC in a

single administrative domain [20]. The network operator manages all resources and

maintains 2 components: service chain management and resource management.

Service management provides interfaces with the network operators and com-

prises SFC provision and configuration, portability and interoperability.

SFC provision and configuration include automatic deployment of VNFs based

on the requested service and resources. Portability and interoperability provide

data management for customers and NFs across multiple domains with a unified

operation interface.

The resource management maintains a catalog for a set of resources and their

attributes. The resources can be required by either containers or app-level services.
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Figure 2.3: Architecture for single-domain networks

Meanwhile, the fragmentation of multiple domains exacerbates the difficulty

of delivering such services. In addition, the dynamic nature of networks imposes

a variety of limitations on service deployment. The SFC needs to be scaled up or

scaled out by considering the incoming traffic flows. Hence, there is a need for an

efficient, automatic and dynamic SFC paradigm that saves cost, time and labor

to benefit the network operators as well as end-users.

Domain Autonomy

Network operators need to maintain autonomy within their domains. In particular,

the domain autonomy in this thesis refers to that every domain can embed different

SFC placement algorithms independently. This is of significant importance to

network operators as sharing the control of domains leads to severe security risks.

Domain Confidential Information

Service chain federation poses the risk of exposing sensitive information to other

network operators. Examples of sensitive information include network topology,

link status, resource utilization in data centers and etc. Sharing such information

could weaken their business-competing advantages. Hence, domain confidential



2.5. SUMMARY 15

information is of significant importance for multi-domain networks.

Domain Scalability

In the service chain federation, the number of participating domains leads to a

significant increase in the network scale. Hence, it is vitally important to devise

a resource management and SFC placement scheme that scales well to large-scale

networks. Moreover, considering the sheer volume of incoming SFC requests com-

pared with the system capacity, it is crucial to improve the system scalability in

terms of processing capacities and bandwidth [21].

2.5 Summary

This chapter illustrates the background and key concepts of this thesis. We present

the essential definitions of NFV, SFC, VNF scaling and administrative domains

in the context of the SFC federation.

We first introduce the NFV technique. In particular, we illustrate the NFV

definition and the NFVI architecture. Then, we present the definition of SFCs,

the SFC architecture and a list of off-the-shelf VNFs. After that, we present

VNF scaling by introducing vertical and horizontal scaling, respectively. We also

summarize the advantages and disadvantages of vertical and horizontal scaling.

Finally, we illustrate the concept of administrative domains and exemplify the

idea by presenting a single-domain architecture.

In the next chapter, we summarize the existing literature on SFC deployment

and analyze their benefits and drawbacks.



Chapter 3

Literature Review

In this chapter, we study the topic of federated service chaining by reviewing

the existing literature and enabling technologies. Federated service chaining is

distributed in nature and hence requires agility, cost optimization, resources op-

timization, innovative services and optimized performance for tailored services.

In this thesis, administrative domains refer to domains that map to different

parities and therefore may include a variety of service providers. Within one

administrative domain, multiple technology tiers can coexist based on the type

of networks such as public cloud data centers, ISP networks and edge networks.

Federated service chaining is referred to as services across the federation of multiple

administrative domains.

To support federated service chaining, recent works have proposed approaches

that aim for different objectives such as end-to-end latency and deployment cost.

Since the existing works pave the way toward the federated service chaining

paradigm, we present an overview of the state-of-the-art literature, demonstrating

their methods and limitations.

3.1 Single-domain Service Chain

Most of the literature on service chaining focuses on a single domain by considering

end-to-end delay, efficient resource allocation and deployment cost.

In this section, we discuss the SFC placement problem for single-domain net-

works. The single domain, in this thesis, refers to as a single administrative domain

that is operated by a single network operator. One domain could contain one or

more clouds. The SFC placement problem for single-domain networks has been

well studied. An integer linear programming problem is usually used to model

such problems with a variety of constraints on network resources, the end-to-end

delay and etc. Moreover, the VNFs are required to be placed in a predefined order

16
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which makes the problem more complicated. Related works fall into a number of

categories based on different objectives as follows. We have selected two most

important objectives, i.e., deployment cost and latency, to formulate our research

problems.

3.1.1 Deployment Cost

The deployment cost minimization has received tremendous attention as it is

tightly coupled with the revenue of service providers. Hence, many research efforts

focus on the minimization of the deployment cost by using means of approaches.

The deployment cost ubiquitously contains computational resource cost, traffic

routing cost, migration cost and etc.

Chen et al. [22] formulate a service placement problem that aims to minimize

the overall cost including deployment cost, server usage cost and energy consump-

tion cost. The cited paper jointly considers the service-placing decision, the user

allocation decision and the end-to-end latency. Also, the cited paper leverages a

local-search based algorithm which starts with a feasible solution and then iter-

ates over local solutions. Extensive experimental results show that the proposed

algorithm achieves provable performance with a guarantee. Shang et al. [23] in-

vestigate the SFC placement problem by considering the operational cost. It is

reported that chasing the lowest cost leads to network congestion on popular links

and hence deteriorates the performance. To address this issue, a candidate path

selection scheme is proposed to jointly reduce the operational cost and avoids

network congestion.

Golkarifard et al. [24] investigate the VNF placement problem with respect to a

variety of practical factors such as request admission, resource activation, resource

allocation and traffic routing. A one-shot problem is formulated to optimize the

overall deployment cost. Then, an online algorithm based on limited knowledge

within each time slot is proposed to solve the problem for large-scale networks.

Zheng et al. [25] comprehensively study the cost minimization problem for SFCs

with provable bounds. It formulates a service chaining and embedding problem

that aims to optimize the deployment cost. Then, a cost factor-based algorithm,

which guarantees a 2-approximation bound, is proposed.

Zhang et al. [26] propose an online adaptive VNF deployment algorithm for 5G

networks by leveraging a demand-supply model to represent VNF interference for

both edge cloud servers and public cloud servers. Octans [27] aims to maximize

the overall throughput of all SFCs for many-core systems. However, cross-node

memory access and other factors may deteriorate the network performance. Hence,

Octans proposes a performance drop index to evaluate the throughput degrada-
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tion and two online algorithms to find near-optimal solutions. Chen et al. [28]

formulate a mixed integer linear programming problem which considers SFC with

different latency requirements. In particular, the nature of services is taken into

account. For example, for delay-sensitive services and delay-tolerant services, dif-

ferent placement strategies should be applied. Then, an approach based on a

modified shortest path algorithm is proposed to address this problem.

Xu et al. [29] formulate an SFC placement problem, aiming to maximize the

overall revenue of all stakeholders in the market. Similarly, Song et al. [1] study

the SFC placement problem on edge and public clouds. The aim is to optimize

the maximum link load ratio while fulfilling the service level agreements. Then, a

randomized rounding approximation approach is proposed to efficiently solve the

problem.

SSCO [30] studies the SFC deployment cost problem by leveraging federated

reinforcement learning. By acquiring the local knowledge of residual resources

and instantiation costs, the federated-learning scheme efficiently reduces the de-

ployment cost. OKpi [31] formulates a VNF placement problem which considers

not only traditional network metrics such as latency and throughput but also

some novel metrics such as availability as well as reliability. OKpi advocates not

only VNF placement but also the selection of radio access points within polyno-

mial computational time. Okpi incorporates graph theory and optimization in a

unique fashion and hence closely matches the optimum.

Gao et al. [32] investigate the VNF placement and scheduling problem that

aims to optimize the cost of leasing VMs. This cited paper carefully considers

several practical factors such as the latency incurred by the start time of VM and

VNF instances. Also, due to the inherent nature of different VNFs, models the

throughput as a function of allocated resources accordingly. Compared with cost-

efficient proactive VNF placement schemes, the proposed approach can achieve

lower cost and latency. Zheng et al. [33], for the first time, propose the hybrid

SFC placement problem that aims to optimize the end-to-end latency cost. The

hybrid SFC consists of not only the upstream traffic but also the downstream

traffic. This is because remote edge/cloud servers may return the proposed traffic

to the customer. An optimal hybrid placement algorithm is proposed based on an

auxiliary graph. The experimental results show that the proposed algorithm finds

the optimal solution with much less execution time compared with a brutal force

algorithm.

Yu et al. [34] present ElasticNFV which takes timely resource demand of sev-

eral service chains into consideration and uses an elastic framework to allocate

resources. The aim is to jointly minimize the migration time and deployment cost

of SF instances. Meanwhile, many research efforts have focused on the network
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policy composition across geo-distributed clouds. Li et al. [35] formulate a rev-

enue optimization problem with constraints on the end-to-end latency, resource

demand and reliability. To solve this problem, a dynamic algorithm is proposed

based on the genetic algorithm and the greedy algorithm. Hope [36] is proposed

to overcome the heterogeneity issues in the SFC placement problem. HOPE aims

to minimize the network cost by guaranteeing that SFs are optimally placed.

Zhou et al. [37] investigate the holistic cost efficiency in cross-edge networks.

The deployment cost contains resource cost and traffic routing cost. By leveraging

an approximate optimization technique, the proposed problem is decomposed into

a number of sub-problems and solves it by rounding the fractional solution. Farki-

ani et al. [38] propose a novel prioritized SFC deployment problem. Then, a

heuristic algorithm and an exact method are proposed to solve this problem.

Eramo et al. [39] propose a proactive approach to accommodate the fluctuat-

ing traffic in peak hours. The approach is based on the Viterbi algorithm that

remarkably reduces the computational complexity. FlexShare [40] aims to reduce

the SFC deployment cost by sharing the NF instances. The problem is tremendous

challenging as sharing such instances needs to balance the workload from different

SFCs. FlexShare is proven to be within a constant factor to the optimum and

performs well in extensive experiments. CLF [41] aims to provide low-cost and

high-performance SFC.

Pei et al. [42] propose a binary integer programming problem, aiming to min-

imize the embedding costs. The resource bottlenecks are regarded as embedding

costs and hence the solution successfully avoids resource bottlenecks. By this

means, the proposed algorithm significantly improves the request acceptance rate

as well as the network throughput. Kariz [43] studies the distributed service func-

tion chaining which distributes the SF instances to different locations.

Bari et al. [44] investigate the SFC placement, aiming to optimize the network

utilization rate and operational costs. The problem is intractable because the

required number and placement of VNFs is difficult to determine. The trace-

driven simulations justify that the proposed algorithm is within a factor 1.3 of the

optimal solution. Cohen et al. [45] address the problem of placing SFs within a

physical network. The deployment cost comprises two parts: the setup costs of SFs

and the distance cost between users. By theoretically proving the performance,

the proposed algorithm guarantees a near-optimal performance.

3.1.2 End-to-End Latency

Recently, 5G and edge computing empower the advance of latency-sensitive ap-

plications such as Augmented Reality (AR), online machine learning and Virtual
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Reality (VR). Many research efforts have focused on the end-to-end latency, aim-

ing to fulfill stringent latency requirements of their applications. In this subsec-

tion, we summarize the related works that focus on latency minimization in SFC

deployment.

Gharbaoui et al. [46] use an experimental prototype to reproduce VNF place-

ment in geo-distributed edge clouds. The cited paper provides a latency-aware

algorithm that jointly considers resilience and adaptation. The experiments show

that the proposed algorithm achieves a mean of 44.38 seconds with a standard

deviation of 4.23 seconds in terms of response time. Liu et al. [47] formulate an

ILP problem that aims to minimize the end-to-end latency for IoT applications.

The cited paper proposes a Lagrangian relaxation heuristic-based approach to ap-

proximate the optimal solution. Extensive experimental results prove that the

proposed algorithm performs well in terms of the end-to-end latency and accept-

ance ratio with theoretical bounds.

Pandey et al. [48] propose EdgeDQN which aims to simultaneously optimize the

underlying resource utilization and the end-to-end latency for multiple SFCs. The

authors assume that edge clouds can rent network resources from neighbors and

remote clouds in the worst case. The proposed EdgeDQN is built on Q-learning

and deep Q-network algorithms in terms of cumulative standard deviation, cu-

mulative reward and learning convergence time for over 400 test cases. Magoula

et al. [49] study the SFC deployment problem for specific 5G vertical industries

such as Industry 4.0 and industrial IoT. A location-aware genetic algorithm based

approach is proposed to minimize the end-to-end latency. Evaluation results show

that the proposed algorithm achieves a near-optimal solution as well as a low ex-

ecution time. The rationale is that the proposed algorithm uses an early stopping

criterion.

Li et al. [50] propose an SFC deployment algorithm based on reinforcement

learning. The proposed algorithm aims to learn from the network system and

then decide the embedding of SFC requests. Extensive experimental results show

that the proposed algorithm adapts to large-scale networks and outperforms other

approaches from the literature. Change [51] proposes an online SFC deployment

scheme which is managed by users. Change aims to minimize the latency at edge

networks in light of user mobility, edge capacity and service migration.

Wang et al. [52] formulate an SFC deployment problem by considering the

end-to-end latency. The problem jointly considers the server, wired link resources

and wireless radio resources. Also, a natural policy gradient is used to train a

deep neural network which can avoid local optimum. Masahiro et al. [53] focus on

jointly resolving the shortest path tour problem and the SFC placement problem.

JOS [54] studies the end-to-end delay minimization problem in heterogeneous
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edge clouds. By employing a game-theoretic approach, the proposed algorithm

achieves a constant approximation factor 2.62 to the optimum. Liu et al. [55]

study the SFC placement problem in hybrid edge clouds. Similarly, it aims to

minimize the end-to-end delay by leveraging an IoT deep reinforcement learning

approach.

FlexChain [56] enables the SFC parallelism to reduce the end-to-end latency.

FlexChain jointly considers the SFC parallelism and placement with a perform-

ance guarantee. Extensive experimental results show that FlexChain significantly

improves the acceptance ratio for latency-sensitive services. Schneider et al. [57]

propose a scalable approach based on deep reinforcement learning. The proposed

algorithm makes rapid deployment decisions in parallel with other nodes. Each

agent requires only local knowledge and hence scales independently from the size

of the network. The decision time is less than 1 ms, and the algorithm achieves

comparable performance in terms of latency and network throughput.

Instead of parallelizing SF instances across different servers, PPC [58] proposes

to only parallelize SFs that could indeed shorten the end-to-end delay. Dab et

al. [59] formulate an ILP problem, aiming to optimize the end-to-end latency as

well as the deployment time. Then, a novel online approach is derived from the

Maglev algorithm which determines the cloud-native network functions at each

level of the network services. The experiments were conducted in a real-world

testbed in Kubernetes.

Xie et al. [60] formulate an ILP problem that aims to optimize both the latency

and the maximum load. The cited paper first conducts real experiments on a

wireless router and reports that the communication between VNFs can consume

a significant amount of CPU on edge devices. Then, an online algorithm, which

distributes the VNFs partially on peer edge devices with low workloads, is pro-

posed. Marcel et al. [61] investigate the runtime traffic scheduling for service

chains, aiming to optimize system utilization and service quality. The proposed

algorithm uses an integer allocation maximum pressure policy to optimize the

network throughput.

Jin et al. [62] investigate a joint problem of optimizing the resource utilization

and the end-to-end latency. By employing a two-stage scheme, a near-optimal

solution is achieved with a performance guarantee. EC-HSFP [63], for the first

time, addresses the problem of optimizing the end-to-end latency in the hybrid

SFC composition and embedding problem. EC-HSFP mainly investigates two

scenarios: (a) every physical node only provides one unique SF. (b) every physical

node provides multiple SFs.

Dab et al. [64] investigate the SFC placement problem for 5G traffic steering

in NFV ecosystem. Then, an optimized network-aware load balancing approach,
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which is derived from a dynamic round-robin algorithm, is proposed. Gao et al. [65]

investigate the problem of the access network selection and the service placement

for mobile edge computing. The long-term optimization problem is decomposed

into a variety of one-shot problems. Then, an iteration-based algorithm is proposed

with guaranteed optimal gap.

Poularakis et al. [66] study the service placement problem with respect to the

data that need to be stored to enable service execution. Multidimensional con-

straints are considered, including storage, computation and communication for the

mobile edge computing networks. A randomized rounding algorithm is proposed

which achieves a near-optimal performance among low-latency edge cloud servers.

Yang et al. [67] study the problem of placing totally ordered and partially ordered

SFCs, aiming to minimize the end-to-end delay.

Dimitrii et al. [68] study the integer multi-commodity-chain flow (MCCF) prob-

lem, aiming to optimize network quality of service constraints. A meta path com-

posite variable approach, that stays within 99% to the optimum, is proposed to

solve this problem. Natif [11] studies the SFC placement by considering the per-

formance of SFs. Since software applications are ubiquitously bottlenecked by

either CPU or I/O resources, a VNF-aware scheme is proposed to dynamically

instantiate SFs and steer traffic.

Sun et al. [69] propose a holistic workflow-like SFC request scheme. A dynamic

minimum response time considering same level algorithm is proposed to deploy the

SFC requests onto edge clouds. Cziva et al. [70] study the SFC placement problem

in edge clouds, aiming to minimize the end-to-end delay from end-users to the SFs.

By leveraging an optimal stopping theory, a proposed algorithm schedules the SFC

placement based on temporal latency fluctuations.

3.1.3 Resilience

Shang et al. [71] study the VNF backup problem with respect to the cost. The aim

is to achieve cost-efficient and resilient SFCs in light of the limited resources at

edge clouds. Then, this cited paper proposes a resilience-aware adaptive algorithm,

which uses both static and dynamic backups, to guarantee the reliability under the

limited capacity of edge clouds. Also, rigorous theoretical analysis is provided for

the performance bounds. Extensive experimental results show that the proposed

algorithm provides remarkably better reliability with lower backup costs.

Alleg et al. [72] formulate a mixed integer linear programming problem, aiming

to achieve VNF recovery after failures. The proposed algorithm leverages a re-

source pool and standby backups to achieve selective diversity and tailored policies.

Meanwhile, the proposed algorithm aims to reduce the inherent cost incurred by
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VNF backup. Extensive experiments justify that the proposed algorithm can not

only improve the VNF resilience but also avoid resource over-provisioning. Qu et

al. [73] study the reliability problem of SFC by considering the VNF backup. A

deep reinforcement learning approach is proposed based on priority. The proposed

algorithm determines the backup policy for each VNF, aiming to optimize latency,

survival rate and load balancing.

Siasi et al. [74] investigate the SFC placement problem for fog computing. The

aim is to address the service survivability by taking stringent failure recovery into

consideration. Also, an elastic protection scheme is proposed to recover failure in

nodes and links. Engelmann et al. [75] propose Generic SFC which considers het-

erogeneity, disjointness, sharing, redundancy and failure. The proposed approach

is based on combinatorics and a reduced binomial theorem.

Chen et al. [76] study the resilient service chaining placement problem, aiming

to minimize the overall latency of flows. A solution with a performance guarantee

is proposed to make the problem tractable. CMAB [77] investigates a combinat-

orial multi-armed bandit problem, which focuses on the VNF backup selection.

Thiruvasagam et al. [78] investigate the SFC placement problem while fulfilling

the latency and reliability requirements. Then, the reliability of virtual monitoring

functions is considered in light of the service degradation. The experimental results

show that the proposed algorithm achieves a factor 1.05 to the optimum. Jia et

al. [79] formulate the SFC backup problem for NFV-enabled 5G network as a

mixed integer non-linear programming problem. This cited paper assumes that

SFC requests arrive randomly and each server can host all types of VNF. The

aim is to optimize the acceptance rate while satisfying the reliability and latency

requirements.

Sharma et al. [80], for the first time, jointly consider the availability and delay

guarantees for SFC placement problem from the theoretical perspective. In par-

ticular, the focus is how many SFCs can be deployed within a single data center.

Wang et al. [81] first report that some small-size flows can lead to network conges-

tion and high delays if they are queuing behind large flows. Then, a parallelized

SFC placement problem is formulated for data center networks with respect to the

availability and network resources. By splitting large data flows into several small

sub-flows, the proposed approaches significantly reduce the end-to-end latency and

improve the availability.

Sen et al. [82] investigate the resilient SFC placement problem by considering

that the primary and the backup service providers can be simultaneously unavail-

able. Hence, a notion of utility is proposed for a routing path between ingress and

egress node pairs to provide reliable utilities. Yin et al. [83] investigate the VNF

backup problem with respect to both VNFs failures and physical node failures.
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Then, a dynamic programming-based placement algorithm is proposed to partition

the problem into several sub-problems which are solved as one-shot problems.

3.1.4 Energy

Thanh et al. [84] aim to provide a resource and energy-efficient solution for IoT

SFCs. The IoT SFC is modeled and then an optimization problem is formulated,

aiming to strike a nice balance among resource allocation, energy efficiency and

resource dynamics. Then, a smart traffic monitoring IP camera is implemented

as the use case to investigate the resource and energy efficiency. The proposed

algorithm handles dynamic traffic load and outperforms some existing solutions

from state-of-the-art. Khoramnejad et al. [85] investigate the SFC offloading prob-

lem by partially offloading VNFs onto MEC servers. The overall objective is to

optimize the energy consumption in user equipment. By using a double deep Q-

network algorithm, the proposed algorithm achieves competitive results against

an exhaustive search algorithm.

Sun et al. [86] propose an energy-efficient routing algorithm by reusing open

servers and load balancing. The proposed algorithm achieves a significant reduc-

tion in energy consumption. Also, the average deployment time is reduced by a

factor 40 compared with an improved Markov algorithm. Zhou et al. [87] propose

an auction scheme to encourage service providers to submit bids for demand. By

leveraging the proximal Jacobian alternating direction method of multipliers, the

proposed algorithm optimizes the social welfare in a distributed manner. Sun et

al. [88] study the energy minimization problem for online SFC requests. The pro-

posed algorithm is based on a low-complexity heuristic which makes it suitable

for fast responding to online SFC requests. The domain confidential information

of each participating cloud is efficiently preserved.

ESSO [89] aims to optimize the carbon footprint of SFC placement. ESSO

leverages an opportunistic SFC adaption to take advantage of surplus renewable

energy. The trace-drive simulations demonstrate that ESSO reduces the carbon

footprint by 2-3 times in a small-scale network. Mukherjee et al. [90] propose a

power-aware approach for cloudlet selection in multi-cloud environment.

Tajiki et al. [91] investigate the resource allocation problem in SDN-based

networks, aiming to minimize the energy consumption. By proposing a near-

optimal heuristic approach, the proposed algorithm achieves a factor 1.14 to the

optimum. Jang et al. [92] study a multi-objective optimization problem that aims

to jointly optimize the energy consumption and the acceptable flow rate. By

leveraging linear relaxation and rounding algorithms, near-optimal performance is

achieved while accommodating more requests.
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3.1.5 Resource Management

Finedge [93] proposes a resource management platform to cope with the resource

limitation, real-time traffic fluctuations and stringent QOS requirements for edge

networks. By considering the flow-level patterns and the effect of resource alloc-

ation, the proposed platform efficiently allocates the most suitable CPU core and

corresponding quota to each SF. Extensive experiments show that Finedge can

handle a variety of flows with the lowest CPU quota while meeting the service

level agreement. Le et al. [94] propose a non-cooperative game theory that maps

the SFC configuration problem to the Nash equilibrium of the formulated game. A

realistic NFV model is reported which considers the fluctuation of actual perceived

rates. Then, this cited paper derives the algebraic representation and potential

function from the semi-tensor-product framework. Finally, the SFC composition

is determined by exploiting the properties of the resulting potential games.

3.2 Centralized Service Chain in Multi-domain

Networks

With the advent of edge computing and IoT, more and more network operators

join the NFV marketplace, resulting in rendering networks more fragmented. The

existing research efforts fall into two categories, i.e., centralized and distributed

approaches. The current centralized approaches largely rely on a centralized net-

work controller that has full control and visibility of every network domain as

shown in Figure 3.1.

Figure 3.1 illustrates a network with 3 domains and a centralized controller.

The controller has full control of SFCs and resources across these domains. Each

domain consists of 3 layers, i.e., SFC layer, virtualization layer and physical layer.

3.2.1 Network Latency

Much of the literature has focused on the network latency because the end-to-end

latency is a key metric to improve the experience of end-users.

Liu et al. [95] study the SFC placement problem for edge clouds and IoTs.

The intrinsic nature of IoT devices and mobile edge clouds are jointly considered.

By leveraging a quantum machine learning approach, a factor 1.1 to the exact

solution is achieved while reducing the run time by 8x compared with the Vi-

terbi algorithm. Son et al. [96] propose a dynamic service provisioning algorithm

to federate both edge and cloud networks. The time-varying network traffic is

considered to automatically allocate resources for latency-sensitive applications.



26 CHAPTER 3. LITERATURE REVIEW

Domain A
SFC Layer

SFC 1

Virtualization Layer

Physical Layer

Domain B

SFC Layer

Virtualization Layer

Physical Layer

Domain C

SFC Layer

Virtualization Layer

Physical Layer

Centralized Controller

Service chain management

Resource management

Monitoring & Reporting

SFC 2

SFC m

..
.

SFC 1

SFC 2

SFC n

.
..

SFC 1

SFC 2

SFC q

.
..

Figure 3.1: Centralized architecture for multi-domain networks

SFCO-AMD [3] studies the SFC orchestration problem across multi-domain

networks by considering the confidentiality of network topology. SFCO-AMD first

employs a full-mesh aggregation approach to simplify the network topology, and

then employs two heuristic approaches to minimize the end-to-end delay. Bhamare

et al. [97] formulate an ILP problem for the optimal SFC placement in light of

inter-cloud response time. The link and computational delays are considered to

meet the stringent service level agreements. Finally, an affinity-based approach is

proposed to find the near-optimal solution.

Cappanera et al. [98] study the SFC placement problem from multiple-stakeholder

perspective. By leveraging a layered auxiliary graph, the cited paper aims to ful-

fill the stringent requirement of subscribers' preferences as well as the quality of

services. Xu et al. [99] envision that SFC across multi-domain would inevitably

increase the end-to-end latency and hence become intractable. An exact approach

and a Viterbi based algorithm are proposed to efficiently find near-optimal solu-

tions. pSMART [100] envisages that network operators are notoriously known

for inhibiting the network information exchange. As a consequence, the lack of

detailed network information renders the multi-domain SFC orchestration intract-

able. Thus, pSMART aims to balance the privacy and network delay trade-off.

pSMART leverages a topology aggregation technique to simplify the network to-

pology and hence preserves the domain confidential information.

Although these approaches pave the way toward service chaining federation,

the existing solutions still suffer from the sheer volume of network resources and



3.2. CENTRALIZED SERVICE CHAIN IN MULTI-DOMAIN NETWORKS 27

network scales. Most of the centralized solutions fail to handle a large number of

SFC requests in a fast manner as all the requests are processed in one controller.

In other words, centralized approaches pose tremendous limitations on scalability.

3.2.2 Deployment Cost

Since the SFC deployment cost is tightly coupled with the revenue of network

operators, many existing works have proposed a variety of methods to minimize

the deployment cost while meeting the service level agreements.

Peng et al. [101] assume that network applications are divisible in the form of

service function chains. Then, Open Jackson queuing network is used to model

the optimization problem of long-term deployment cost. A cost-aware algorithm

is devised based on Lyapunov drift-plus-penalty function to optimize the cost in

a time-slot manner. Samanta et al. [102] jointly consider latency-tolerant and

latency-constraint services to optimize service latency and revenue. A priority-

based management scheme is used to differentiate services and hence reduces the

service latency. CRSO [103] investigates the service cost minimization problem

of SFC across multi-domain networks. Meanwhile, CRSO provides an economical

redundancy approach to guarantee resilient requirements.

Similarly, Zhou et al. [37] propose a novel method to jointly reduce the resource

cost as well as the traffic routing cost. A regularization approach, that decomposes

the formulated problem to a number of one-off fractional problems, is used to

provide a near-optimal solution. Zhang et al. [104] investigate the SFC placement

problem in multi-domain networks by proposing a multi-objective optimization

problem. The aim is to minimize the deployment cost while fulfilling the constraint

of end-to-end delay.

MOSC [105] studies the problem of minimizing the operational cost by out-

sourcing SFC to remote public clouds. MOSC assumes that different domains

provide different pricing schemes of network functions. David et al. [106] invest-

igate the SFC placement problem with respect to the traffic scaling incurred by

SFs and SF location dependencies. A network function partitioning technique is

used to derive near-optimal solutions.

However, there are some limitations of the aforementioned approaches. These

approaches largely overlook the domain autonomy in multi-domain networks. Dif-

ferent network operators are not likely to share the control of their domains as

doing so could reveal their business-sensitive competitive advantages.
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3.2.3 Resource Management

Due to the multi-domain, geo-distributed, resource-distributed nature of networks,

the interest in resource management for federated service chaining remains high.

Resource management, in this thesis, refers to a system that allocates and scales

network resources based on multiple objectives. Unlike only optimizing a single

objective such as the deployment cost or the network delay, a resource management

system aims to strike a nice balance between multiple network performances.

He et al. [107] study the maximum link load factor minimization problem

without service chain graphs. An approximation algorithm is proposed based on

the randomized rounding method and proves the efficacy of the proposed algorithm

by extensive simulations. Unicorn [108] addresses the issue of discovering and

representing the network resources of heterogeneous network domains. Unicorn

abstracts the resource availability of every domain to a state and provides a query

algorithm to efficiently collect the network information and hence preserves the

domain confidential information.

Gupta et al. [109] study the SFC deployment problem to minimize the network

resource consumption. An ILP problem is formulated with respect to multiple

SF replicas. Then, a two-phase column-generation-based approach is proposed to

solving the problem with reasonable execution time over large-scale networks. The

proposed algorithm helps to analyze the number of SF replicas and the number

of servers. X-MANO [110] provides a confidential federation interface for multi-

domain service chaining. X-MANO can be applied in peer-to-peer and cascading

configuration for multi-domain federation.

3.2.4 Resilience

Niu et al. [111] use a sideway cross backup model that jointly considers the re-

silience of VNFs and physical machines in data center networks. After that, a

meteor shower optimization approach is proposed based on heuristics to improve

the availability and execution time. Abdelaal et al. [112] first propose a problem

that is termed as virtual network functions and their replica placement. The cited

paper jointly considers load balancing and a number of resource constraints. The

aim is multi-fold, including link utilization minimization, energy optimization and

deployment cost.
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3.3 Distributed Service Chain in Multi-domain

Networks

There are also a few works that resort to distributed approaches, aiming to federate

multiple domains in an efficient and scalable manner. In general, distributed

approaches use multiple domain controllers connected by a secured communication

network as shown in Figure 3.2.

Domain A

NFV Management and Orchestration

NFVO VIM

SFC Layer

SFCs

Virtualization Layer

Physical Layer

Domain B

NFV Management and Orchestration

NFVO VIM

SFC Layer

SFCs

Virtualization Layer

Physical Layer

Domain C

NFV Management and Orchestration

NFVO VIM

SFC Layer

SFCs

Virtualization Layer

Physical Layer

Federation Communication Network

Figure 3.2: Distributed architecture for multi-domain networks

Figure 3.2 illustrates a network with 3 domains that is federated in a distrib-

uted manner. Every domain contains a controller that is responsible for NFV

management and SFC orchestration. These domains communicate with others

via a federated communication network.

3.3.1 Latency

Necklace [4] proposes a distributed framework that cooperates with virtual paths

hosting service chains. Necklace uses a fully distributed asynchronous consensus

scheme with guaranteed convergence time. By leveraging theoretical analysis,

Necklace proves that Necklace achieves a (1 − 1/e) approximation ratio com-

pared with the Pareto optimal chain instantiation. Extensive experimental results

verify that Necklace has superior performance. Catena [113] proposes a distributed

paradigm for resilient service chains. Even in presence of non-byzantine failures,

Catena still achieves guaranteed convergence time and performance with respect

to the Pareto optimal approach.



30 CHAPTER 3. LITERATURE REVIEW

3.3.2 Deployment Cost

Yu et al. [114] study an online SFC placement problem by balancing the trade-

off between IT and spectrum resources. A two-phase orchestration algorithm is

devised for time-efficient SFC placement.

Xu et al. [115] investigate the SFC placement problem with respect to a mobile

service market of multiple network operators competing for network bandwidth

and computation resources. An ILP problem is formulated to optimize the over-

all social cost of all network operations. Then, a distributed approach based on

game theory is used to determine resource sharing among multiple participants.

Extensive simulations demonstrate that the social cost can be remarkably reduced

by collaborating with multiple network operators. The simulation results demon-

strate that the proposed approach significantly reduces the deployment cost and

shortens the deployment time.

CRSO [103] investigates the SFC deployment cost minimization problem while

considering the reliability requirements. The deployment cost consists of the

cross data-center bandwidth cost and service function cost. By leveraging Hidden

Markov model, CRSO backups SFs to satisfy a variety of reliability requirements.

ADDM [6] investigates the SFC deployment cost problem by considering the nodal

resource cost and the link delay cost. ADDM splits the SFC cost minimization

problem into multiple sub-problems. Also, ADDM aims to support scalability and

confidentiality by using a fully distributed solution.

3.3.3 Resource Management

Toumi et al. [21] propose an end-to-end framework for multi-domain networks

with respect to the internal communication protocols of each participating do-

main. Also, the authors conducted extensive simulation in light of a variety

of key performance indicators with different encapsulation protocols. Ning et

al. [116] formulate an optimization problem that maximizes the system utility.

The server capacity constraint and the service execution latency are jointly con-

sidered. First, the long-term optimization problem is decomposed into a series

of one-shot problems by using Lyapunov optimization method. Then, a sample

average approximation-based stochastic algorithm is proposed to optimize the ex-

pected system utility. The proposed algorithm achieves a minor performance gap

compared with the optimum.

Chen et al. [117] propose a distributed resource management scheme based on

artificial intelligence for edge clouds. A network virtualization technique in IoT

scenarios is proposed, and an optimization problem is formulated to optimize the

total utility. Also, a dynamic algorithm, which is derived from resource-aware
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matching algorithm and averaged multi-step double deep q-network algorithm, is

proposed to embed SFC requests in a distributed manner.

Castaneda et al. [5] study the NFV dependent reconfiguration problem. In

multi-domain networks, there are multiple domain orchestrators that manage the

shared network resources. The consistency of the dependent reconfiguration is

guaranteed in a distributed manner. Also, the collaboration among multiple par-

ities is enabled as doing so could federate all participants. GDM [118] studies the

SFC embedding problem in multi-domain networks. GDM aims to preserve the

autonomy and confidential information of the participated domains. By allow-

ing every domain to embed their assigned segments with respect to their policies,

GDM successfully achieves domain autonomy. Huff et al. [119] propose a dis-

tributed scheme to manage SFC across multiple domains. By leveraging SFC

segments, Huff enables different segments to communicate with each other.

Mohammad et al. [19] propose a dynamic algorithm based tabu search to place

VNF managers for large-scale networks in a distributed manner. The algorithm

aims to optimize the operational cost with respect to rigorous performance require-

ments. Extensive experimental results show that the proposed algorithm achieves

near-optimal performance and significantly reduces the operational cost. Zhang

et al. [120] propose a vertex-centric SFC orchestration scheme for multi-domain

networks. A fully distributed approach is used to maintain physical information

locally. By this means, the management complexity is remarkably reduced.

3.4 Service Chain Scaling

Service chain scaling is of significant importance to the scalability of the architec-

ture. Edge computing has given birth to a variety of novel applications such as

augmented reality, virtual reality, self-driving and etc. In general, these applica-

tions are sensitive to end-to-end delays. Since edge servers have limited capacity

compared with cloud servers, the scarce edge resources need to be managed in a

flexible and agile manner. By leveraging VNF instance scaling technology, service

providers are able to handle the time-varying traffic demand.

One way to scale VNF is horizontal scaling (scale-out) which allows creating

more or less VNF instances. Every instance processes a few traffic flows to adapt

to the fluctuation in traffic demands.

Another way is vertical scaling (scale-up) which adds more or less computa-

tional resources to an existing VNF instance. By this means, the VNF instance can

be resized by changing the CPU or memory capacity. Vertical scaling is usually

limited by the resource capacity of the hardware.
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3.4.1 Horizontal Scaling

Many research efforts have focused on horizontal scaling as it could avoid re-

source bottlenecks on a single server. However, horizontal scaling approaches need

to schedule the traffic flows among multiple instances, resulting in sophisticated

management.

He et al. [7] propose a VNF scaling detection scheme in the chain-wide gran-

ularity which enables SFC with arbitrary sizes. Then, reinforcement learning

technologies are used to schedule the VNF placement based on chain-aware rep-

resentations. Extensive experimental results demonstrate that the proposed al-

gorithm significantly reduces the overall system cost and optimizes other network

performance. Pham et al. [121] investigate the SFC placement problem for IoTs.

This cited paper first assumes that IoT services can be deployed at edge clouds

in the form of VNFs. Then, an operational cost minimization problem is formu-

lated. The proposed algorithm horizontally scales the number of VNFs based on

branch-and-bound. Also, the deep neural network model is used to remove the

unlikely solutions in the space and hence improves the performance significantly.

Li et al. [122] propose an automatic scaling approach to improve the overall

cost of the tenanted instances. As the network traffic workload varies over time,

it is critical to accommodate the sheer volume of traffic without wasting network

resources. Hence, a horizontal scaling approach is used to reduce the overall costs.

Zhao et al. [123] investigate the VNF scaling problem, aiming to optimize the

transmission delay and improve the resource utilization in VMs. Then, a scale-

out based algorithm is proposed to efficiently use network resources.

Tong et al. [124] report a dynamic VNF scaling algorithm with a proactive

traffic prediction method. The proactive prediction method is based on the deep

learning network which enables decision-making ahead of time. The proposed

algorithm uses multiple agents to explore the solution space and updates network

parameters. Hence, this solution is time-efficient. FastScale [125], for the first

time, proposes an idea of chain-wide scaling. In short, FastScale considers not only

a single VNF scaling but also downstream VNFs. Since scaling an overloaded VNF

consequently influences the downstream traffic rate, FastScale carefully considers

the SFC scaling by updating a threshold repeatedly.

Luo et al. [126] investigate the dynamic scaling of VNF instances within cloud

data center. An online scaling algorithm is proposed to scale out VNF instances,

aiming to accommodate the time-varying traffic demand. Also, the optimality

bound by theoretical analysis is also proved. Hieff [127] jointly considers the VNF

scaling and flow mapping problem in a VNF cluster. By leveraging a flow table

of heavy flows, Hieff manages light flows with a hash table. Extensive exper-
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imental results justify that Hieff accommodates massive flows with low latency

while balancing the workload among multiple VNF instances.

Yao et al. [128] investigate the horizontal scaling deployment of VNFs, aiming

to minimize the operational cost. An offline VNF placement problem is formu-

lated. Subramanya et al. [129] investigate the SFC placement and scaling prob-

lem for mobile edge computing. A neural-network model, which scales VNFs

automatically by forecasting the required number of VNF instances, is proposed.

The dynamic traffic patterns, the end-to-end latency and constraints on network

resources are jointly considered.

Tang et al. [130] study the horizontal VM scaling in data center networks.

The traffic patterns in an operator network is first investigated. Then, a traffic

prediction method and two VNF placement algorithms are proposed to perform

horizontal scaling. Patel et al. [131] propose a proactive approach based on deep

learning which predicts the auto-scaling of VNFs ahead of time. The SFC place-

ment problem is formulated as a cost minimization problem. Through theoretical

analysis and trace-driven simulation, the proposed approach significantly reduces

the overall cost with higher service availability.

Fei et al. [132] propose a proactive prediction approach for VNF scaling ahead

of time. An SFC placement problem is formulated, aiming to minimize the cost

incurred by inaccurate traffic prediction. The performance of the proposed al-

gorithm is proven by both theoretical analysis and trace-driven simulation. Wang

et al. [133] propose a pre-planned resource allocation scheme, aiming to solve the

SFC placement and scaling problem. The bandwidth requirement is guaranteed

which saves extensive network bandwidth. By leveraging a communication graph,

tenants can reserve bandwidth resources between VNFs for service chains. Mean-

while, the proposed algorithm significantly reduces the VM migration overhead.

3.4.2 Vertical Scaling

Many research efforts use vertical scaling to handle the time-varying traffic de-

mand. Vertical scaling has lower complexity compared with horizontal scaling.

However, vertical scaling is usually limited by the resource capacity of the hard-

ware. We summarize the existing literature on vertical scaling for the SFC de-

ployment problem.

Qu et al. [8] propose a traffic parameter learning method. Change point detec-

tion and Gaussian process regression are used to study traffic parameters for every

time slot. Then, a Markov decision process is proposed to optimize the migration

cost and resource overloading penalty. DYVERSE [134] proposes multiple priority

management techniques to achieve dynamic scaling. DYVERSE aims to advocate



34 CHAPTER 3. LITERATURE REVIEW

workload-aware, system-aware and community-aware service scaling with service

level objective constraints. By leveraging an online game and a face detection

workload, DYVERSE verifies the performance of DYVERSE.

Zu et al. [135] formulate an ILP problem, aiming to deploy SFC requests with

minimized latency cost. The vertical capacity scaling in routing commodities

is considered. Also, this cited paper derives the optimal capacity for each VM

based on the Karush-Kuhn Tucker conditions. Luo et al. [136] study the VNF

scaling problem for geo-distributed SFC. A deep-learning-based approach is used

for predicting the traffic pattern over time. Trace-driven experiments prove that

the proposed algorithm timely achieves competitive system costs.

ElasticSFC [137] proposes an auto-scaling approach to minimize the opera-

tional cost while fulfilling the service level agreement. ElasticSFC jointly considers

the SFC placement, migration and traffic engineering. The proposed algorithm

outperforms other approaches in terms of average throughput, acceptance rate

and mean instance utilization. Gouareb et al. [2] formulate a mixed integer linear

programming problem to minimize the network end-to-end latency by leveraging

vertical scaling.

Jia et al. [138] study the SFC placement problem by considering practical time-

varying traffic demand across geographically distributed data centers. The aim

is to minimize the operational cost over a variety of time slots. By leveraging

a regularization-based approach, the offline optimal problem is converted to a

number of one-shot regularized problems. Not only trace-driven simulations but

also theoretical analysis are provided. Ghaznavi et al. [139] formulate an elastic

virtual network function placement problem, aiming to minimize the cost of cloud

providers. The aim is to strike a nice balance between the network bandwidth

and the deployment cost. Experimental results show that the proposed algorithm

accommodates two times more workload compared with a first-fit algorithm.

3.4.3 Hybrid Scaling

There are also a few schemes that use hybrid scaling to accommodate the time-

varying traffic demand. Hybrid scaling refers to that the approaches use both

vertical and horizontal scaling. We summarize the existing works as follows.

Subramanya et al. [140] propose centralized and federated approaches based

on deep learning models, aiming to enable SFC scaling for multi-domain networks.

A forecasting problem is formulated that predicts the required number of VNF

instances ahead of time. Finally, extensive experiments are conducted in a testbed

based on Kubernetes and prove the performance of the proposed algorithms. Zhai

et al. [141] propose a hybrid scaling approach to handle the SFC demands that
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frequently change. A key challenge is how to balance the scaling success ratio and

the network resources. By leveraging vertical and horizontal scaling approaches,

the resource consumption is effectively reduced and the scaling success ratio is

improved.

Xie et al. [56] study the SFC scaling problem by considering SF parallelism.

Since VNFs incur significant processing delay, the flexibility of NFV networks

deteriorates. To cope with this, a parallelism-aware approach is proposed to ef-

ficiently improve the acceptance ratio and reduce the average delay. Rahman et

al. [142] propose an auto-scaling scheme based on negotiation-game. It is assumed

that tenants always comply with the decision of network operators, and quality of

service requirements are homogeneous. After that, a forecasting method is pro-

posed based on a proactive machine-learning approach. Extensive experimental

results demonstrate that the proposed algorithm achieves a win-win situation for

both tenants and network operators.

ENSC [10] proposes a hybrid scaling approach by jointly considering NFV effi-

ciency and scalability. ENSC investigates the advantages of vertical and horizontal

scaling in depth. Then, ENSC formulates an ILP problem and devises a heuristic

algorithm called Rubik. Houidi et al. [143] formulate an ILP problem in light of

the VNF placement and traffic routing problem. Then, a hybrid scaling approach

is proposed to optimize the service interruption time incurred by scaling. The

simulation results demonstrate that the proposed algorithm outperforms a greedy

algorithm in most aspects.

3.5 Summary

In this chapter, we present state-of-the-art works in terms of the SFC deployment.

In particular, we summarize the existing literature for single-domain SFC, cent-

ralized SFC for multi-domain, distributed SFC for multi-domain and service chain

scaling, respectively.

In this context, a wide range of SFC orchestration schemes have been pro-

posed to optimize various objectives such as the deployment cost, the end-to-end

latency, energy consumption and etc. Centralized SFC orchestration suffers from

scalability issues as the network scale increases significantly in multi-domain net-

works. Many existing approaches resort to distributed schemes that distribute the

decision-making process between multiple controllers. Nevertheless, most of them

largely overlook the intrinsic nature of service chain federation which calls for do-

main autonomy and confidential information. To improve the system scalability,

we also need to improve the scalability of an individual VNF. This is because the

network traffic is time-varying and dynamic in nature and hence VNFs need to
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scale processing capacities to handle the traffic fluctuation. However, most ex-

isting approaches ignore the VNF category and hence fail to avoid the resource

bottlenecks in VNFs.

In the next chapter, we present the system models.



Chapter 4

System Model

In this chapter, we present the system models including the physical network,

service function chain, affinity constraints, queueing theory, VNF scaling and flow

routing. These models are used to formulate the research problems and devise

solutions.

4.1 Physical Network

We model the physical network as a connected graph G = (V , E), where V =

{v1, v2, ..., vV } denotes the set of all nodes and E = e1, e2, ..., eE denotes the set

of all links. In this thesis, every node is regarded as a cloud/edge data center

that includes multiple NFV servers. Every cloud can host VNF instances on their

Virtual Machines, containers or physical hosts. Every node v contains multiple

fields {v.cpu, v.mem, v.domain, v.tier}. v.cpu and v.mem represent the maximum

CPU and memory capacity of node v, respectively. Similarly, let v.domain and

v.tier denote the domain and tier of node v, respectively. In this work, we use

tier to represent the type of a cloud, e.g., public cloud, edge cloud or ISP cloud.

If e = (u, v) ∈ E , then the inter-cloud ink e traverses the edge clouds u, v ∈ V .
We use Cv(t) to denote the remaining processing capacity at edge cloud v for time

slot t. Let Cbw
uv (t) denote the remaining bandwidth capacity of the inter-cloud link

(u, v) ∈ E at time slot t. Every edge e ∈ E has a bandwidth capacity. Finally, we

use P to represent the paths in the physical network.

4.2 Service Function Chain Model

Service function chain is a set of VNFs in a predefined order. Hence, we use

R to represent the set of SFC requests. Every request is denoted by an 9-tuple

r =
{
src, dst,N ,Ψbw,Ψtr, ltd, Tt, Dd, F

}
, in which src and dst represent the ingress

37
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and egress node, respectively. N = {n1, n2, ..., nN} represents the set of VNFs in

a sequential order. Every VNF n consists of multiple fields, i.e., {type, cpu,mem}.
n.type denotes the VNF type such as flow monitor or proxy. n.cpu and n.mem

represent the required amount of CPU and memory resources for the SFC, re-

spectively. Ψbw is the required bandwidth resource, and Ψtr denotes the required

traffic rate. Also, ltd denotes the maximum tolerated latency. Tt and Dd denote

the set of domain and tier constraints, respectively. We use F to represent the

set of traffic flows. Every SFC request consists of multiple flows f ∈ F . We use

n1
i , n

2
i , ..., n

j
i to denote the instances of VNF ni, which are the VNF replicas or

instances.

4.3 Coarse-grained SFC Request Affinity

In this section, we introduce the coarse-grained SFC request affinity constraints.

Since network operators could have demands to specify the constraints on domains

and tiers, we use such constraints to fulfill these requirements. These constraints

support SFC-level policies. By leveraging the idea of affinity and anti-affinity, we

define the domain and tier constraints as follows.

Tt =



1 indicates SFC request

to be deployed at tier t.

−1 prevents SFC request to be

deployed at tier t.

0 otherwise.

(4.1)

Dd =



1 indicates SFC request to be

deployed at domain d.

−1 prevents SFC request to be

deployed at domain d.

0 otherwise.

(4.2)

4.4 Fine-grained SFC Request Affinity

In this section, we show the improved fine-grained SFC affinity constraints which

support VNF-level constraints. Such fine-grained constraints enable flexible and

agile SFC placement compared with the coarse-grained constraints.
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T ni
t =



1 indicates VNF ni

to be deployed at tier t.

−1 prevents VNF ni to be

deployed at tier t.

0 otherwise.

(4.3)

Dni
d =



1 indicates VNF ni to be

deployed at domain d.

−1 prevents VNF ni to be

deployed at domain d.

0 otherwise.

(4.4)

4.5 Queueing Theory

Queueing theory and queueing models provide a good insight for modeling network

delays. We use the M/M/1 to model the queues at VNFs and network links

because they can be regarded as a single server with a single queue. The M/M/1

queueing system includes a single queue and a single server. SFC requests arrive

based on a Poisson process with rate λ.

The average delay D(t) in the system contains two parts: the average service

time 1
µ(t)

and the average waiting time in queue W (t) [144].

D(t) =
1

µ(t)
+W (t) (4.5)

where µ(t) denotes the processing capacity of the system. By using Little’s The-

orem [144], the average waiting time is defined as follows.

W (t) =
ρ(t)

µ(t)− λ(t)
(4.6)

We use λ(t) to represent the traffic arrival rate which is the total traffic rate

of all flows in the system. ρ(t) is equal to the ratio of arrival rate and processing

rate.

ρ(t) =
λ(t)

µ(t)
(4.7)
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Hence, the average delay is given as follows.

D(t) =
1

µ(t)− λ(t)
(4.8)

4.6 VNF Scaling and Flow Routing

There are usually two ways to scale VNFs. The first one is vertical scaling. Vertical

scaling adds more or less physical resources, e.g., CPU and memory, to an existing

container or virtual machine. The processing capacity of the scaled VNF instance

increases. The second one is horizontal scaling. Horizontal scaling creates more

or less virtual instances. Each instance accommodates a few traffic flows.

In vertical scaling, the new processing rate at µnew
ni

(t) for VNF ni is denoted
as follows.

µnew
ni

(t) =

0 if λni
(t) ≤ λni

(t− 1)

µni(t)− µni(t− 1) otherwise.
(4.9)

where λni
(t) and λni

(t − 1) represent the total arrival rate at time slot t and

t − 1, respectively. µni
(t) and µni

(t − 1) are the total processing rate of VNF ni

at time slot t and t− 1, respectively.

In horizontal scaling, the required number of new VNF instances for VNF ni

is computed as follows.

znewni
(t) =

0 if λni
(t) ≤ λni

(t− 1)

⌈µni
(t)−µni

(t−1)

µmax
ni

⌉ otherwise.
(4.10)

where µmax
ni

represents the maximum processing capacity for one instance.

4.7 Symbols and Variables

Table 4.1 presents the symbols for physical network. Symbols for service function

chains are illustrated in Table 4.2. Table 4.3 shows the symbols of parameters.

Finally, Table 4.4 presents the binary variables for the problem formulation.
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Table 4.1: Physical Network

Physical Network Description

G = (V, E) Physical network graph.

R = {r1, r2, ..., rR} All SFC requests.

V = {v1, v2, ..., vV } All nodes in the network.

E = {e1, e2, ..., eE} All physical links in the network.

P = {p1, p2, ..., pP } All paths in the network.

Ccpu
v , Cmem

v Remaining CPU and memory

capacity in node v.

Cbw
p Remaining bandwidth capacity

on path p.

Cv(t) Remaining processing capacity

in the edge cloud v.

Cbw
uv (t) Remaining bandwidth capacity

in the inter-cloud link uv.

Table 4.2: SFC

SFC Description

src/S Ingress node of the SFC request.

dst/T Egress node of the SFC request.

N = {n1, n2, ..., ni} All NFs in the SFC request.

nj
i jth instance of the VNF ni.

c
nj
i
(t) Amount of processing capacity

required by the VNF instance nj
i .

v.cpu, v.mem Total capacity of CPU and

memory on node v.

ccpuni , cmem
ni

Amount of CPU and memory

required by NF ni.

Ψbw Required bandwidth.

Ψtr Required traffic rate.

bfuv(t) Traffic rate of flow f in link uv.

ltd Maximum tolerated delay.

ld End-to-end delay of a given SFC.

Dni
d The domain constraint.

Tni
t The tier constraint.
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Table 4.3: Parameters

Parameters Description

βcpu
d Resource cost of one unit of CPU

in domain d.

βmem
d Resource cost of one unit of

memory in domain d.

cp Traffic routing cost parameter

of path p.

λ
nj
i
(t) Arrival rate at VNF instance nj

i .

µ
nj
i
(t) Processing rate at VNF instance nj

i .

λni(t) Total arrival rate at VNF ni.

µni(t) Total processing rate at VNF ni.

Table 4.4: Binary Variables

Binary Variables Description

yni
v Indicator if NF ni is hosted on

node v.

y
ni,nj
p Indicator if traffic from NF ni

to nj is routed through path p.

x
nj
i

fv(t) Indicator variable equals 1 if VNF

instance nj
i of flow f is hosted on

edge cloud v.

y
nj
in

j
i+1

fuv (t) Indicator variable equals 1 if flow f

traverses the virtual link nj
in

j
i+1 which

is mapped to physical link uv.

4.8 Summary

In summary, this chapter presents the system models to formulate the research

problems.

First, we present the physical network model for multi-domain networks and

edge cloud networks. Then, the service function chain model is given by using

a 9 tuple. After that, the coarse-grained and fine-grained affinity constraints

are provided. These constraints include constraints for the domain and the tier.

Moreover, we provide a queueing model for the latency analysis. Then, we provide

models for VNF scaling and flow routing. Finally, all the symbols and variables

are provided.
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In the next chapter, we propose two novel SFC orchestration schemes for multi-

domain networks in a distributed manner.



Chapter 5

Distributed Federated Service

Chaining

In this chapter, we propose a distributed architecture for the SFC placement prob-

lem in multi-domain networks, aiming to minimize the deployment cost for service

chains. The proposed Distributed Federated Service Chaining (DFSC) algorithm

jointly considers the domain autonomy, scalability and domain confidential inform-

ation to bridge the gap in the multi-domain networks. In particular, we propose

a coarse-grained algorithm and a fine-grained algorithm to adapt to differently

tailored policies for network operators. We first formulate an ILP problem for

SFC placement. Then, we present the proposed algorithms. Finally, we show the

experimental results and compare the performance with the optimum as well as

other approaches from the existing literature.

5.1 Introduction

As illustrated in Chapter 1, federated service chaining calls for scalability due to

the significantly increasing network scale [145]. For example, network services are

shifting from centralized clouds to distributed edge clouds. If more and more edge

service providers join the market, the network scale will significantly increase. In

the meantime, the number of administrative domains will rise sharply and makes

the networks fragmented. Hence, it is of significant importance to federate service

chains across multiple domains.

However, federating such services calls for a high degree of service federation

and resource sharing among multiple domains. Existing research efforts are unable

to support these as they either only consider inter-cloud federation or resort to

centralized resource management, both of which assume that all the network and

resource information are known and that a centralized controller has visibility and

44
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full control of all network domains.

Edge cloud

Domain A 
New York

 State

Domain B 
Texas

Public cloud
Traffic 

counter

JaywalkerVehicles

ISP cloud

Domain C 
California

Orchestrator 
B

Control 
Channel

SFC 
request

Object 
tracker
Object 
tracker

Object 
classifier
Object 

classifier

Orchestrator 
A

Orchestrator 
C

Edge cloud

Public cloud

ISP cloud

Edge cloud

Smartphone

Figure 5.1: An example of SFC in multi-domain networks

Further, there are demands for service providers to specify domains and tiers

of VNFs. The term “tier” refers to different types of clouds such as public clouds,

ISP clouds and edge clouds. Figure 5.1 illustrates a service chain that detects

jaywalkers. The service chain consists of an object tracker, an object classifier

and a traffic counter. Certain VNFs are location and hardware dependent. For

example, the object tracker must be embedded in domain California when col-

lecting jaywalking data in California. Hence, there is a demand to specify the

domain for VNFs. Similarly, the object classifier, which recognizes jaywalkers and

cars, usually requires GPU for supporting a deep neural network (DNN). A public

cloud can be equipped with certain hardware such as GPUs, which is why the

object classifier needs to be deployed in a public cloud rather than an edge cloud.

Therefore, there is also a demand to specify the tier.

To overcome the above challenges, in this chapter, we propose the Distributed
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Federated Service Chaining scheme (DFSC) which preserves domain autonomy

and domain confidential information of every participating domain. Each domain

uses an independent controller which takes full advantage of the underlying infra-

structure. Also, we reduce the amount of required network information by using

the full-mesh aggregation. The scheme shows good scalability as it runs in a

distributed manner with low complexity and reduces the execution time by 70%.

We formulate the SFC placement problem as an ILP problem, aiming to op-

timize the deployment cost in monetary form. We also devise domain and tier

constraints to specify the location of SFC requests. Then, we propose two al-

gorithms, i.e., coarse-grained and fine-grained DFSC to provide different granu-

larity for constraints. Coarse-grained DFSC provides domain and tier constraints

in the SFC granularity. In contrast, fine-grained DFSC provides domain and tier

constraints in the VNF granularity.

We conducted extensive simulations in Network Simulator 3 (NS3) and Min-

inet. In a small-scale network, we compare DFSC with the offline optimum, show-

ing the optimality gap. The experiment shows that DFSC achieves excellent per-

formance within a factor of 1.15 to the offline optimum. In a large-scale network,

we use a centralized approach (SFC Orchestration Across Multiple Domains) and

a distributed approach (Distributed Network Service Embedding) to benchmark

DFSC. DFSC achieves supreme performance by reducing up to 20% deployment

cost and 70% decision-making time compared to the baseline approaches .

5.2 Problem Description

In this section, we formulate the SFC placement problem as an ILP problem that

aims to minimize the overall deployment cost for multi-domain networks. This

problem needs to determine the placement of VNFs in a sequential order and the

traffic routing paths with respect to the resource capacities, the deployment cost

and the end-to-end latency.

5.2.1 Problem Statement

The usage of computing and network resources comes with a monetary cost for

service providers. When provisioning a service chain across multiple geographically

distributed clouds, the consumption of computing resources incurs a resource cost

in clouds. Similarly, the traffic routing cost is incurred by the usage of bandwidth

resources in network links among clouds. In particular, the aim is to optimize

the overall deployment cost for a given SFC request. We use C to denote the

overall deployment cost per second. Let CR represent the resource cost per second
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and CT denote the traffic routing cost per second. Then, the deployment cost is

formulated as follows.

C = CR + CT . (5.1)

5.2.2 The Resource Cost

The resource cost comprises two parts, i.e., the CPU and memory costs. Hence,

the resource cost CR is denoted as follows.

CR =
∑
ni∈N

∑
v∈V

(βcpu
d ccpuni

yni
v + βmem

d cmem
ni

yni
v ) (5.2)

where βcpu
d and βmem

d denote the monetary costs of provisioning one unit of

CPU and memory in the domain d, respectively. ccpuni
and cmem

ni
represent the

required amount of CPU and memory resources for VNF ni, respectively. Also,

yni
v is an indicator variable that equals 1 if the VNF ni is hosted on node v, and

0 otherwise.

5.2.3 The Traffic Routing Cost

When network traffic is routed along a service chain, traffic routing costs are

incurred by the usage of network bandwidth. The costs are caused by the total

bandwidth consumed on virtual links that are mapped to physical links. We use

a unified cost parameter cp to represent the cost of steering one unit of traffic

along with path p because the routing cost is determined by the routing path.

Therefore, the routing cost CT for one SFC request is denoted as follows.

CT =
∑
p∈P

cpΨ
trysrc,n1

p +
∑
p∈P

∑
ni,nj∈N

cpΨ
tryni,nj

p

+
∑
p∈P

cpΨ
trynN ,dst

p .
(5.3)

where Ψtr represents the traffic rate of the request. y
ni,nj
p denotes an indicator

variable that equals 1 if the path p is used between VNFs ni and nj, and 0

otherwise. Specifically, ysrc,n1
p denotes whether the path p is mapped to the virtual

link between the ingress node and the first VNF, and ynN ,dst
p indicates whether path

p is mapped to the virtual link between the last VNF and the egress node.
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5.2.4 SFC Orchestration Problem for Heterogeneous

Multi-domain Networks

In this work, we consider the SFC placement as an online problem which means

that SFC requests arrive one by one.

Problem 1 Given the amount of computing resources available at each node, the

amount of network resources at each link, the required resources by the SFC, the

problem is to embed the VNFs and the subsequent traffic routing paths that min-

imize the deployment cost.

minimize C = CR + CT (5.4)

This problem is subject to multiple constraints.∑
ni∈N

ccpuni
yni
v ≤ Ccpu

v , ∀v ∈ V (5.5)

∑
ni∈N

cmem
ni

yni
v ≤ Cmem

v , ∀v ∈ V (5.6)

∑
p∈P

∑
ni,nj∈N

Ψbwyni,nj
p ≤ Cbw

p (5.7)

∑
v∈V

yni
v ≤ 1 (5.8)

ld ≤ ltd (5.9)

Constraints 5.5 and 5.6 ensures that the required CPU and memory resources

must not exceed the remaining CPU capacity Ccpu
v and memory capacity Cmem

v at

the node v. Similarly, constraint 5.7 guarantees that the required bandwidth re-

sources cannot exceed the remaining bandwidth capacity Cbw
p on the path p. Con-

straint 5.8 represents that every VNF for the request must only be assigned once.

Also, constraint 5.9 ensures that the end-to-end delay ld must not exceed the max-

imum tolerated delay ltd.

For coarse-grained DFSC, the domain and tier constraints are presented as

follows.

if Tt = 1,
∑
v∈Vt

yni
v = 1 (5.10)

if Tt = −1,
∑
v∈Vt

yni
v = 0 (5.11)
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if Dd = 1,
∑
v∈Vd

yni
v = 1 (5.12)

if Dd = −1,
∑
v∈Vd

yni
v = 0 (5.13)

Constraints 5.10 and 5.11 are tier constraints that guarantee all VNFs in the

SFC request can or cannot be placed at tier t. Constraints 5.12 and 5.13 are

domain constraints that guarantee all VNFs in the SFC request can or cannot be

placed at domain d.

For fine-grained DFSC, the domain and tier constraints are presented as fol-

lows.

if T ni
t = 1,

∑
v∈Vt

yni
v = 1 (5.14)

if T ni
t = −1,

∑
v∈Vt

yni
v = 0 (5.15)

if Dni
d = 1,

∑
v∈Vd

yni
v = 1 (5.16)

if Dni
d = −1,

∑
v∈Vd

yni
v = 0 (5.17)

Constraints 5.14 and 5.15 are tier constraints that guarantee a VNF can or

cannot be placed at tier t. Constraints 5.16 and 5.17 are domain constraints that

guarantee a VNF can or cannot be placed at domain d.

Problem 1 can be proven to be NP-hard. For this we demonstrate that the

Multiple Knapsack Problem (MKP), which is known to be NP-hard [146], can be

reduced to this problem. The input of the MKP problem is a set M of items,

where the weight of item mi ∈ M are mi.weight. A set K of knapsacks, where

the capacity of kj ∈ K are kj.cap. The profit of mapping mi to kj is fij. The

objective of the MKP problem is to maximize the overall profit.

For the reduction, we map each item mi to an NF ni with mi.weight = ccpuni
.

Each knapsack kj is considered as a node vj with kj.cap = vj.cpu. Then, we assume

the memory resources are infinite on the node vj. Consider the special case that

each SFC consists of only one NF. The profit fij is the negative of the deployment

cost of assigning ni to vj. Assume that there are sufficient nodes to host all NFs,

meaning that no nodes are overloaded. Thus, the MKP problem becomes a special

case of problem 1. The objective is to minimize the overall deployment cost, or

maximize the total profit. Therefore, the MKP problem can be reduced to the SFC
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placement problem and, hence, the SFC placement problem is NP-hard. Similarly,

we could also assume kj.cap = vj.mem and the CPU resources are infinite on the

node vj. In this case, the MKP problem is still reducible to problem 1.

5.3 Distributed Federated Service Chaining

Algorithm

In this section, we demonstrate the distributed federated service chaining al-

gorithm. The main difference between coarse-grained and fine-grained DFSC is

that the former checks domain and tier constraints for every SFC, and the latter

checks these constraints for every VNF in the chain.

The proposed algorithm is devised to find SFC placement for problem 1. DFSC

distributes the decision-making progress to several domain orchestrators, in which

the domain autonomy and domain confidential information are well preserved.

DFSC merely requires a few network information such as inter-domain links and

border nodes. Figure 5.2 illustrates the workflow of the proposed DFSC algorithm.

Request

Ingress orchestrator creates the aggregated network graph

Ingress orchestrator finds k-shortest paths

Ingress orchestrator partitions the request

Ingress orchestrator assigns sub-requests
to several peer orchestrators

Peer orchestrators place
sub-requests successfully

Try next
shortest path

Peer orchestrators return results to ingress orchestrator

End

Yes

No

Figure 5.2: The workflow of DFSC

In this work, we assume that every domain is associated with a domain or-
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chestrator that manages all the intra-domain information but has only limited

information about other domains. If an SFC request arrives at a domain, the

request is partitioned by the ingress orchestrator into multiple sub-requests. The

ingress orchestrator refers to the orchestrator in a domain that the SFC request ar-

rives. After that, these sub-requests are sent to multiple peer orchestrators. The

peer orchestrators process these sub-requests to find a placement, respectively.

Finally, the placement results are sent back to the ingress orchestrator.

First, the ingress orchestrator creates an aggregated graph by leveraging the

full-mesh aggregation [147]. The aggregated graph includes only border nodes

and inter-domain links to preserve domain confidential information. Then, the

ingress orchestrator leverages a k-shortest path algorithm [148] between source

and target pairs in the aggregated graph. The k-shortest path algorithm can

provide multiple candidate paths, resulting in exploring the path diversity at the

cost of a slight degradation in decision-making time compared to the Dijkstra′s

shortest path algorithm. After that, the ingress orchestrator determines how to

partition the SFC request into sub-requests and assign sub-requests to multiple

peer orchestrators. Finally, every peer orchestrator strives to find a solution within

their own domain and sends placement results back to the ingress orchestrator.

The ingress orchestrator then assembles the placement of sub-requests and creates

the overall placement for the SFC. The details are given in the following sections.

5.3.1 Constructing the Aggregated Graph

Domain confidential information is always a crucial concern for multi-domain net-

works [100]. To this end, we merely require limited information by leveraging an

aggregated graph. The aggregate graph only requires the information of border

nodes and inter-domain links. This can be achieved by the Border Gateway Pro-

tocol [149]. As shown in Figure 5.3(a), grey nodes represent border nodes and the

link that connects two border nodes is an inter-domain link. Consequently, the

intra-domain connectivity and topology are preserved as confidential information.

Thus, domain internal information is preserved.

As aforementioned, the aggregated graph is only comprised of inter-domain

links, border nodes and logical intra-domain links. We derive the aggregated

graph from the physical network based on the full-mesh aggregation. The full-

mesh aggregation approach is to only keep border nodes and remove other nodes.

Then, the intra-domain links are replaced by a few logical links. Figure 5.3(b)

shows that grey nodes are border nodes. The white nodes stand for the ingress

and egress nodes of the SFC request. The dotted and solid lines represent the

inter-domain and logical links, respectively. The latency ld and traffic routing cost
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Figure 5.3: Topology aggregation

parameter cp for every logical link are set to 0 in this phase because we aim to

preserve the domain confidential information. There is enough information for the

DFSC algorithm to partition the SFC requests into sub-requests in this phase.

5.3.2 Distributed Federated Service Chaining Placement

In this subsection, the distributed framework is presented. Algorithm 1 demon-

strates the pseudo-code of DFSC algorithm. First, the ingress orchestrator creates

the aggregated network graph when the SFC request arrives. Then, the ingress or-

chestrator creates several candidate paths based on the k-shortest path algorithm

with respect to the traffic routing cost. Then, the SFC request is partitioned

into multiple sub-requests based on the resource cost parameters βcpu
d and βmem

d .

Finally, sub-requests are assigned to peer orchestrators. Peer orchestrators run

Algorithm 2 which searches for solutions for the intra-domain placement. If any

of the intra-domain placement fails, DFSC will place the request on the next

candidate path until all candidate paths fail.

The DFSC algorithm is initialized in line 1 in algorithm 1. After that, lines

3-17 and lines 24-26 run at the ingress orchestrator. Meanwhile, lines 18-23 are

executed on peer orchestrators. The aggregated graph is constructed in line 3. In

line 4, the k-shortest path algorithm is employed to compute candidate paths. In

lines 6-8, DFSC checks the bandwidth requirement. In line 9, the related domains

are sorted based on the resource cost parameters. For simplicity, we regard the sum

of βcpu
d and βmem

d as the sorting criteria. After that, the ingress orchestrator checks

the available resources of related domains. Next, the ingress orchestrator selects a

feasible domain with the lowest resource cost to host the VNF. Note that the main

difference is that coarse-grained DFSC checks the SFC-level domain constraints.

In contrast, the fine-grained DFSC checks the VNF-level domain constraint. In
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Algorithm 1: Distributed Federated Service Chaining Placement

1 Input: SFC request r, resource cost parameter βcpu
d and βmem

d of each
domain, traffic routing cost parameter cp;

2 Output: Routing path, hosted nodes, deployment cost;
3 Construct aggregated graph Ga = (Va, Ea);
4 Find k-shortest path Pk = p1, p2, ..., pk according to traffic routing cost;
5 while p ∈ Pk ̸= ∅ do
6 if Ψbw > Cbw

p then
7 continue;
8 end
9 Sort the set of domains on the path p based on βcpu

d and βmem
d ;

10 for ni ∈ N do
11 Find the available domain d with the lowest resource cost;
12 if d meet the constraint Dd then
13 Assign the NF to d;
14 else
15 Find next d;
16 end

17 end
18 for each domain d on path p do
19 Call Algorithm 2 on peer orchestrators;
20 end
21 if Algorithm 2 fails then
22 Continue;
23 end
24 if ld ≤ ltd then
25 break;
26 end

27 end

line 19, algorithm 2 is invoked.

Algorithm 2 demonstrates the intra-domain placement algorithm that is sim-

ultaneously executed on multiple peer orchestrators. First, the peer orchestrator

employs the k-shortest path algorithm to find candidate paths within its own

domain. After that, the peer orchestrator places the VNF to the first available

node. In the meantime, the tier and resource constraints are examined. It is worth

mentioning that coarse-grained DFSC checks the SFC-level tier constraints, while

fine-grained DFSC checks the VNF-level constraints for every VNF. Then, if all

VNFs in the sub-request are placed, the peer orchestrator sends the placement

results back to the ingress orchestrator.
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Algorithm 2: Intra-domain Deployment

1 Input: Assigned NFs N d for domain d, single domain graph Gd = (Vd, Ed);
2 Output: Routing path pd in Gd, a set of nodes Vh that host NFs;
3 Find k-shortest paths Pk = p1, p2, ..., pk according to traffic routing cost in

Gd;
4 while p ∈ Pk ̸= ∅ do
5 if Ψbw > Cbw

p then
6 continue;
7 end
8 for Each ni in N d do
9 Find the node v on p with enough computing resources;

10 if t meet the constraint Tt then
11 Assign the NF to v;
12 else
13 Find next v;
14 end

15 end
16 if all NFs are assigned then
17 return pd and Vh;
18 end

19 end
20 return Intra-domain deployment failure;

5.3.3 Compared Algorithms

The SFCO-AMD and DistNSE algorithms have been used to benchmark the per-

formance of DFSC. We describe these compared algorithms as follows.

� SFC Orchestration Across Multiple Domains (SFCO-AMD) [3]

We select this algorithm because SFCO-AMD also considers the SFC place-

ment for multi-domain networks. It is a good comparison as it uses central-

ized architecture for the management of service chains. SFCO-AMD parti-

tions the SFC requests based on an aggregated graph in a centralized man-

ner. This approach also uses all the possible abstracted paths that connect

the ingress and egress nodes. For an SFC request, SFCO-AMD first par-

titions the request into several sub-requests on average. Then, VNFs are

placed in a first-fit manner.

� Distributed Network Service Embedding (DistNSE) [149]

DistNSE uses a distributed architecture which is a good comparison to the

proposed architecture. To demonstrate the performance of DFSC, we com-

pare the proposed DFSC approach to DistNSE in light of a wide range of

metrics such as deployment cost, decision-making time and etc. DistNSE
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deploys SFC requests in a distributed manner. DistNSE uses a bidding

mechanism that allows domains to bid for VNFs. First, DistNSE finds all

the paths between ingress and egress nodes. Then, the SFC request is parti-

tioned into a set of sub-requests for domains to compete. Every sub-request

is assigned to the domain with the lowest offer. To ensure the correct order

of SFC, this algorithm only allows bidding for the last selected sub-request.

5.4 Evaluation for Coarse-grained DFSC

In this section, we show the experimental results for coarse-grained DFSC. We

conducted extensive trace-driven simulations to justify the performance of the

proposed DFSC algorithm.

5.4.1 Evaluation Environment

(a) Topology Agis (b) Topology Internode

Figure 5.4: Topology in the simulation

We implemented DSFC and SFCO-AMD approaches in Network Simulator 3

(NS3) and conducted the experiments on a server with 105 GB RAM and an

Intel(R) Xeon(R) E5645 processor with 24 cores. We use two topologies Agis

and Internode from the Internet Topology Zoo [150] as shown in Figure 5.4. The

topology Agis consists of 25 nodes, 30 links and 5 domains. The topology Internode

consists of 66 nodes, 75 links and 9 domains.

Every SFC request consists of a varying number of VNFs chosen from 5 off-the-

shelf VNFs, i.e., firewall, NAT, proxy, load balancer and IDS. We set the number

of CPU cores for one public cloud, ISP cloud and edge cloud to 1000, 500 and 200,

respectively. Similarly, the memory capacities are set to 1000 GB, 500 GB and

200 GB, respectively. The link bandwidth for inter-domain and intra-domain are
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1000 Mbps and 500 Mbps, respectively. The propagation delay is set between 2

ms and 10 ms for every link. Also, the ingress node, the egress node and VNFs are

randomly created. For every VNF, the required number of CPU and the required

amount of memory are set to (1,10) and (1,20) GB, respectively. The number of

VNFs in the SFC request is 3. The required traffic rate is set between 100 kbps

and 500 kbps. Also, domain and tier constraints are randomly generated. The

value of k for the k-shortest path is empirically set to 8 because the performance

is not remarkably improved when k is greater than 8.

The cost settings are derived from the Amazon instance prices [151]. The CPU

resource cost per second ranges from $0.001 to $0.005. The memory resource cost

per second ranges from $0.001 to $0.004. The traffic routing cost for one Mbit

over a link is between $0.02 to $0.05. Finally, the maximum tolerated end-to-end

latency ranges from 50 ms to 100 ms.

To justify the effectiveness of DFSC, we first compare DFSC with the offline

optimum and SFCO-AMD in a small-scale network. Then, we run DFSC and

SFCO-AMD in a large-scale network, wherein achieving the optimum solution

from an ILP solver in a reasonable time is impractical.

To prove the performance of the proposed algorithm, the metrics include the

deployment cost, the decision-making time, the acceptance rate of request, the

cumulative distribution function of deployment cost and end-to-end latency.

5.4.2 Evaluation Results for Agis Topology

To study the optimality gap, we first compare the performance of DFSC and

SFCO-AMD with the optimum achieved by the Gurobi solver in a small-scale

network.

We first show the cost ratio in Figure 5.5. The cost ratio is the ratio of the aver-

age deployment cost attained by DFSC and SFCO-AMD to the offline optimum.

The cost ratio of DFSC stays within 1.15 times to the optimum. In contrast,

the worst case for SFCO-AMD is approximately 1.3 times to the optimum. This

result suggests that DFSC can effectively approach the optimum and has stable

performance. The rationale is that DFSC jointly considers the resource and traffic

routing cost which leads to a lower overall cost.

Then, we demonstrate the total decision-making time in Table 5.1. The

decision-making time is the execution time of the algorithms in NS3 which sug-

gests the time efficiency of the algorithms. The decision-making time of DFSC

ranges from 0.58 seconds to 9.6 seconds. In contrast, the decision-making time of

SFCO-AMD ranges from 45.2 seconds to 369.7 seconds. The Gurobi solver spends

201 to 5673.9 seconds to find the offline optimum. Overall, DFSC is several orders
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Figure 5.5: Number of requests vs. cost ratio in topology Agis

of magnitude faster than the ILP solver. Similarly, DFSC is also at least one order

of magnitude faster than SFCO-AMD. This is because DFSC runs in a distrib-

uted manner with low complexity which significantly reduces the run time of the

algorithm. The results suggest that DFSC is time-efficient, scalable and capable

of processing substantial SFC demands.

5.4.3 Evaluation Results for Internode Topology

For the Internode topology, we compare the proposed DFSC approach with SFCO-

AMD approach. The SFCO-AMD approach is regarded as the baseline. We do

not implement the ILP solver for this topology because it cannot find the optimum

Table 5.1: Decision-making time
Number of DFSC SFCO-AMD Gurobi
requests

3 0.58s 45.2s 201s
6 1.48s 62.6s 505s
9 2.76s 119.2s 903.2s
12 3.8s 137.08s 1441.3s
15 5.08s 176.36s 1978.8s
18 5.55s 211.55s 2958.6s
21 6.43s 250.6s 3783.2s
24 7.62s 271.92s 4857.8s
27 8.42s 291.46s 4192s
30 9.6s 369.7s 5673.9s
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in a reasonable time.

Figure 5.6: The DFSC/SFCO-AMD cost ratio in topology Internode

Figure 5.6 shows the ratio of CPU cost, memory cost, traffic routing cost and

deployment cost. We observe that DFSC reduces the overall deployment cost by

12% compared with SFCO-AMD. Similarly, DFSC outperforms SFCO-AMD in

terms of CPU and memory cost by up to 22% and 26%, respectively. However,

the SFCO-AMD approach achieves 11% less traffic routing cost. The rationale is

that DFSC makes a trade-off between traffic routing and resource cost to optimize

the overall deployment cost. Hence, DFSC outperforms SFCO-AMD in terms of

the overall deployment cost in every case. This result suggests that DFSC is

cost-efficient for large-scale networks.

After that, we investigate the total decision-making time of DFSC and SFCO-

AMD for the Internode topology. We run both algorithms against a varying

number of SFC requests. From Figure 5.7(a) we observe that the decision-making

time of DFSC increases slowly while that of SFCO-AMD rises dramatically. The

total decision-making of DFSC ranges from 2.98 to 35 seconds, while that of

SFCO-AMD ranges from 46 to 714 seconds.

The DFSC algorithm outperforms SFCO-AMD in each case by one order of

magnitude. This is because DFSC uses a distributed scheme, in which the decision

process is distributed to several orchestrators in parallel. The workload for each

orchestrator is significantly reduced. Furthermore, the DFSC approach embeds

the k-shortest path algorithm rather than searching all candidate paths in SFCO-

AMD approach. By this means, the decision-making time is also shortened.
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(a) Decision-making time (b) Acceptance rate

Figure 5.7: The comparison of decision-making time and acceptance rate

Then, we continue to investigate the acceptance rate against a varying number

of SFC requests. The acceptance rate is the ratio of successfully deployed SFC

requests to the total number of SFC requests. As depicted in Figure 5.7(b),

the acceptance rate drops slightly for both algorithms as the number of requests

increases. This is due to the emergence of resource bottlenecks. Overall, the DFSC

algorithm can still improve the acceptance rate by 12% on average.

(a) CDF of deployment cost (b) CDF of end-to-end delay

Figure 5.8: CDF of deployment cost and delay

Figure 5.8(a) demonstrates the CDF of the deployment cost. DFSC deploys

80% of the requests within $0.11. In contrast, SFCO-AMD only deploys 60%

requests. This is because DFSC strikes a nice balance between resource and traffic

routing costs.

Also, we show the CDF of the end-to-end latency in Figure 5.8(b). The end-

to-end latency is measured by sending packets along the chain. The SFCO-AMD

algorithm achieves 99 percentile SFC requests within 35 ms. However, only 87%
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SFC requests of DFSC approach experience less than 35 ms latency. The rationale

is that, because DFSC performs better in terms of acceptance rate, more traffic is

routed in the network which can incur greater latency. Also, DFSC can select a

longer routing path to optimize the overall cost.

5.4.4 Acceptance Rate over Different k Values

Table 5.2 shows the acceptance rate against different k values for the k-shortest

path.

Table 5.2: DFSC performance under different k values
Value of k Acceptance rate Decision-making

time
1 73% 17.0s
2 74% 17.6s
3 75% 18.3s
4 75% 19.1s
5 75% 20.4s
6 78% 21.1s
7 78% 21.9s
8 79% 21.5s

Since the k value refers to the number of candidate paths, we need to find a

suitable value for k. Also, we reduce the number of CPU cores to 100, 50 and 20,

respectively. Similarly, we reduce the memory capacities to 100 GB, 50 GB and

20 GB, respectively. The bandwidth capacities for inter and intra-domain links

are reduced to 100 Mbps.

We observe that the acceptance rate rises from approximately 73% to 79%

when k value increases from 1 to 8. The rationale is that greater k values imply

more candidate paths in DFSC approach which can be used to accommodate more

SFC requests. Hence, DFSC is more likely to accept more requests. Also, the

decision-making time rises inevitably from 17 to 21.5 seconds due to the increase

of the searching space.

5.5 Evaluation for Fine-grained DFSC

In this section, we show experimental results for fine-grained DFSC.

5.5.1 Evaluation Environment

To provide in-depth insights into the performance, we embed the fine-grained

DFSC not only in NS3 but also in an emulator, i.e., Mininet. Mininet utilizes real
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CPU, memory and hardware clock. The experiments are conducted on a server

with 105 GB RAM and an Intel(R) Xeon(R) E5645 processor with 24 cores. The

topologies are still derived from the Internet Topology Zoo. The cost settings and

system parameters are still identical to that in the coarse-grained DFSC section.

5.5.2 System Parameter

Table 5.3: Parameter Settings

Description Values
Number of domains for Agis 5
Number of domains for Internode 9
CPU Capacity in cloud 1000
CPU Capacity in ISP cloud 500
CPU Capacity in edge cloud 200
Memory Capacity in cloud 2000GB
Memory Capacity in ISP cloud 1000GB
Memory Capacity in edge cloud 400GB
Bandwidth Capacity in inter-domain link 1000Mbps
Bandwidth Capacity in intra-domain link 2000Mbps
Link delay [2,5] ms

Description Values

CPU cost parameter [0.001, 0.005] $/s
Memory cost parameter [0.001, 0.004] $/GBs
CPU demand of NF n [1,10]
Memory demand of NF n [3, 30] GB
Traffic rate requirement [100, 500] kbps
Traffic routing cost parameter [0.02, 0.05] $/Mb
Maximum tolerated delay [50, 100] ms

All the parameter settings are listed in Table 5.3. The source and target nodes

of an SFC request are uniformly selected at random from the set of nodes in the

network. The chain length, that is the number of NFs in a request, varies from 3

to 6. The number of cores in one cloud, ISP cloud and edge cloud is 1000, 500,

and 200, respectively. The memory capacity of one cloud, ISP cloud and edge

cloud is 2000 GB, 1000 GB and 400 GB, respectively. The bandwidth capacities

for inter-domain and intra-domain links are set to 1000 Mbps and 2000 Mbps,

respectively. The propagation delay is randomly selected between 2 ms and 10 ms

for every link. For each NF, the number of CPU cores is randomly selected from

{1, 2, ..., 10}. The memory requirement in GB is randomly selected from {1, 2,
..., 20}. Then, we set up some simulation parameters according to some similar

papers [42], [152]. Also, the domain and tier constraints are randomly created.

The value k for k-shortest path is set to 8 because of empirical studies. The reason

behind this setup is that acceptance does not significantly increase when the value
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of k is greater than 8. Each SFC request contains of a varying number of network

functions.

To prove the performance of the proposed algorithm, the metrics include the

deployment cost, the decision-making time, the acceptance rate of request, the

cumulative distribution function of deployment cost.

5.5.3 Evaluation Results for Agis Topology

In this subsection, we compare the fine-grained DFSC to the offline optimum,

SFCO-AMD and DistNSE for Agis topology. The optimum is still derived from

Gurobi solver. Specifically, given an SFC request, Gurobi finds the placement

for VNFs and traffic routing paths that optimize the deployment cost. In this

experiment, we test DFSC against a varying number of SFC requests with a step

size 3.
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Figure 5.9: Number of requests vs. cost ratio in topology Agis

First, we show the cost ratio of DFSC, SFCO-AMD and DistNSE against the

offline optimum which is the ratio of the deployment cost of both algorithms to the

optimum. As shown in Figure 5.9, we observe that DFSC achieves 115% deploy-

ment cost to the optimum, justifying the effectiveness of our proposed algorithm.

Moreover, DFSC outperforms SFCO-AMD and DistNSE in every case. The cost

ratio of SFCO-AMD ranges from 1.2 to 1.3 compared with the optimum. Simil-

arly, DistNSE achieves 1.3 to 1.4 in terms of the cost ratio. When the number of

SFC request increases, the cost ratio of DFSC only increases slightly, indicating

DFSC has stable performance. The results of DFSC in NS3 and Mininet have sim-

ilar trends, suggesting that DFSC has stable performance. We prove that DFSC

achieves near-optimal solutions in a small-scale network.

Then, we continue to analyze the time efficiency of DFSC. The decision-making

time refers to the CPU time spent by the algorithm. In Figure 5.10, we observe

that: (1) DFSC reduces the decision-making time by at least 70% compared with

SFCO-AMD and DistNSE, and DFSC is two orders of magnitude faster than the
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Figure 5.10: Number of requests vs. decision-making time in topology Agis

ILP solver. As the number of SFC requests rises, the decision-making time of

DFSC varies slightly while that of SFCO-AMD, DistNSE and ILP solver increases

dramatically. The rationale is that DFSC runs in a distributed manner which

significantly reduces the workload for every orchestrator. Also, we use the k-

shortest path algorithm instead of finding all the candidate paths between ingress

and egress pairs. This result suggests that DFSC significantly reduces the decision-

making time by 70%.
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Figure 5.11: Number of requests vs. acceptance rate in topology Agis

Finally, the acceptance rate is shown in Figure 5.11. The acceptance rate is

the ratio of the number of successfully placed requests to that of total incoming

requests. DFSC achieves about 84 and 85% in NS3 and Mininet, respectively.

In contrast, that of SFCO-AMD fluctuates around 85-87%. DistNSE achieves

about 86%. We observe that SFCO-AMD and DistNSE only outperform DFSC by

about 2%. This is because SFCO-AMD and DistNSE search for all paths between

ingress and egress pairs. Although this can slightly improve the acceptance rate,

it inevitably leads to a significant increase in the execution time.
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5.5.4 Evaluation Results for Internode Topology

Then, we compare the performance of DFSC, SFCO-AMD and DistNSE in a large-

scale topology. This topology consists of 66 nodes and 78 links and 9 domains.

We do not implement the ILP solver for this topology as it cannot find feasible

solutions in a reasonable time.
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(c) Chain length 5
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(d) Chain length 6

Figure 5.12: Number of requests vs. deployment cost for the topology Internode

Figure 5.12 shows the average deployment cost per request in NS3 and Min-

inet. We observe that DFSC outperforms SFCO-AMD and DistNSE in every

case against a different number of requests and different lengths of chains. DFSC

achieves the average deployment cost ranging from $0.08 to $0.09 for chain length

3, $0.11 to $0.12 for chain length 4, $0.12 to $0.13 for chain length 5 and $0.13

to $0.14 for chain length 6. The average deployment cost of SFCO-AMD ranges

from $0.10 to $0.11 for chain length 3, $0.12 to $0.13 for chain length 4, $0.15 to

$0.16 for chain length 5 and $0.17 to $0.18 for chain length 6. The deployment

cost of DistNSE ranges from $0.09 to $0.95 for chain length 3, $0.12 to $0.13

for chain length 4, $0.16 to $0.17 for chain length 5 and $0.2 to $0.21 for chain

length 6. DFSC effectively reduces the deployment cost by up to 20% compared

with SFCO-AMD and DistNSE. The rationale is that DFSC achieves a nice bal-

ance between resource and traffic routing costs. The reduction of performance

by SFCO-AMD is because of the inefficient partition of SFC requests. Similarly,
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DistNSE only allows bidding for last selected sub-requests which leads to an in-

crease of deployment cost. This result suggests that DFSC is cost-efficient and

has stable performance.
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Figure 5.13: CDF of deployment cost for the topology Internode

Figure 5.13 shows the distribution of the average deployment cost with 500

SFC requests. DFSC NS3 and DFSC Mininet perform better than SFCO-AMD

and DistNSE in NS3 and Mininet in most cases. In chain length 3, DFSC achieves

$0.21 at 99th percentile while that of SFCO-AMD and DistNSE are are $0.21. In

chain length 4, DFSC achieves $0.22 at 99th percentile while that of SFCO-AMD

and DistNSE are $0.23. In chain length 5, DFSC achieves $0.29 at 99th percentile

while that of SFCO-AMD and DistNSE are $0.29 and 0.31$, respectively. In chain

length 6, DFSC achieves $0.29 at 99th percentile while that of SFCO-AMD and

DistNSE fluctuates around $0.33-0.35. Overall, DFSC reduces the deployment

cost by up to 20% even at 99th percentile because it consolidates as many as

possible VNFs in the low-cost domain while considering the traffic routing cost on

the paths.

Then, we demonstrate the total decision-making time for the algorithms in

Figure 5.14. We observe that DFSC outperforms SFCO-AMD and DistNSE in

both NS3 and Mininet. The decision-making time of DFSC rises much slower than

that of SFCO-AMD and DistNSE in most cases. In NS3, the decision-making time
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(d) Chain length 6

Figure 5.14: Number of requests vs. decision-making time for the topology Inter-
node

of DFSC ranges from 33 seconds to 160 seconds on average. In contrast, it takes

10 to 50 minutes for SFCO-AMD to make decisions. It takes DistNSE 20 to 50

minutes to make decisions. Overall, in NS3, the average decision-making time per

request of DFSC, SFCO-AMD and DistNSE are about 0.3 seconds, 6.5∼7 seconds

and 7∼13 seconds, respectively. We observe the similar trend in Mininet. It takes

DFSC about 90 seconds to 7 minutes to make decisions in Mininet. However, it

takes 5 to 25 minutes for SFCO-AMD and DistNSE to make decisions. Overall,

in Mininet, the average decision-making time per request of DFSC, SFCO-AMD

and DistNSE are about 1 second, 1.5∼3 seconds and 2∼5 seconds, respectively.

This is because DFSC uses a distributed approach to run the decision-making

process in parallel on multiple orchestrators. Another factor is that DFSC uses

a k-shortest path algorithm instead of searching all available paths. This result

suggests DFSC scales well when the number of SFC requests increases. Although

DistNSE also runs in a distributed manner, it needs to process bidding among

domains which increases the decision-making time. We also observe that the gap

among DFSC, SFCO-AMD and DistNSE in NS3 is larger than that in Mininet.

This is because DFSC spends more time making decisions in Mininet than NS3 as

DFSC serializes the messages into the disk in Mininet. In NS3, the communication

among orchestrators is achieved by global variables. Overall, DFSC is at least 70%
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faster than SFCO-AMD and DistNSE either in NS3 or Mininet.
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Figure 5.15: Acceptance rate for the topology Internode

After that, we examine the acceptance rate of the algorithms. Figure 5.15

shows the acceptance rate of the algorithms against different chain lengths. The

acceptance rate of DFSC fluctuates around 84∼89%. In contrast, the acceptance

rate of SFCO-AMD ranges from 85∼92%. The acceptance rate of DistNSE is

about 92∼94%. On average, SFCO-AMD and DistNSE outperform DFSC by 2-

3%. The rationale is that, SFCO-AMD and DistNSE embed an algorithm that

finds all candidate paths between source and target nodes, resulting in placing

more SFC requests than DFSC. Overall, DFSC achieves a comparable acceptance

rate.

Overall, fine-grained DFSC reduces the deployment cost significantly by up

to 20% compared with SFCO-AMD and DistNSE at the cost of low performance

degradation in acceptance rate. Meanwhile, DFSC shortens the decision-making

time by at least 70%.
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5.6 Summary

In this chapter, we study the SFC placement problem in multi-domain networks.

We formulate an ILP problem, aiming to minimize the deployment cost as well as

improve the scalability. We introduce two proposed algorithms, i.e., coarse-grained

DFSC and fine-grained DFSC. Coarse-grained DFSC enables SFC-granularity con-

straints while fine-grained DFSC enables VNF-granularity constraints. Hence,

fine-grained DFSC allows tailored policies for service providers in a flexible and

agile manner. DFSC first builds an aggregated graph by using the full-mesh ag-

gregation which reduces the amount of shared information. Then, DFSC uses a

cost-aware algorithm to place VNFs and route the traffic.

We implemented DFSC in Gurobi, NS3 and Mininet, respectively. We bench-

mark DFSC with the optimum and other approaches against a different number

of requests and different chain lengths. Overall, DFSC reduces the deployment

cost remarkably as it strikes a nice balance between the resource and routing cost.

Similarly, DFSC shortens the decision-making time significantly due to its distrib-

uted nature. The decision-making process is distributed to multiple orchestrator

and executed parallelly. The trade-off is that DFSC is outperformed by SFCO-

AMD and DistNSE in terms of acceptance rate. This is because SFCO-AMD and

DistNSE find all candidate paths in the network while DFSC only uses k-shortest

path algorithm to save time. Overall, DFSC achieves near-optimal deployment

cost while reducing the execution time by at least 70%. This result indicates that

DFSC processes the SFC request in a fast manner.

In the next chapter, we present the bottleneck-aware VNF scaling and flow

routing algorithm that is a key enabler for the system scalability.



Chapter 6

Bottleneck-aware VNF Scaling

In this chapter, we continue to investigate how to improve the system scalability for

service chain federation. To this end, we study the VNF scaling and flow routing

problem in edge clouds. Edge computing delivers a wide range of applications with

low latency for end-users, which advocates real-time applications such as augmen-

ted reality and self-driving. As edge clouds are usually limited in terms of resource

capacities, we use VNF scaling technology to better utilize the valuable and scarce

resources at the edge. In VNF scaling, every VNF comprises one or multiple VNF

instances which are VNF replicas in virtual machines or containers. Every in-

stance accommodates a few incoming traffic flows to avoid resource limitations

incurred by computation and network resource constraints. In this chapter, we

provide a bottleneck-aware VNF scaling algorithm and a subsequent flow routing

algorithm that dynamically accommodate time-varying traffic workloads, shorten

the end-to-end latency and reduce the resource utilization. Extensive experiments

show that the proposed algorithm achieves near-optimal latency and improves the

VNF utilization rate by 15%. Also, the execution time is significantly reduced by

up to 87.2%.

6.1 Introduction

As introduced in Chapter 1, it is vitally important to improve the system scalab-

ility as the number of SFC requests will increase in service chain federation. A

promising approach is to improve the VNF scalability, aiming to accommodate

the time-varying traffic workloads. In the meantime, novel applications such as

augmented reality and self-driving cars call for low latency.

Since edge computing handles computational tasks at the proximity of end-

users, it can reduce the end-to-end latency and the expenditures for service pro-

viders. Nevertheless, edge clouds usually have limited capacity compared with

69
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public clouds. Hence, we consider federating edge clouds to better use the scarce

and valuable physical resources. VNF scaling in edge clouds enables multiple VNF

instances that are VNF replicas on virtual machines or containers. Every VNF

instance processes a few incoming flows to avoid resource limitations incurred by

different computation or network resources (i.e., CPU, memory and bandwidth).

In this chapter, we focus on a crucial problem: How to minimize the end-to-end

latency of SFCs while improving the VNF utilization at edge clouds with VNF

scaling?

Edge Cloud 3Edge Cloud 2Edge Cloud 1

15

20 20 15 10

20 10
IDS Flow Monitor Load Balancer

(a) An overloaded service chain
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(b) After scaling by using existing solutions

Figure 6.1: Existing solutions of vertical and horizontal scaling

It is very challenging to address the above problem in edge clouds. Resources

need to be shared among geo-distributed edge clouds because the traffic demands

are significantly different at different locations or points of time. For example,

the traffic demand concentrates at offices in working hours while gaming traffic

is aggregated at homes during the evening. Hence, the bandwidth resource on

hotspot links can be insufficient in peak hours.

However, most existing approaches largely ignore two issues. First, VNFs

cannot be scaled without limitations. Many works report that the performance

of VNFs can be easily bottlenecked on CPU, memory or bandwidth [9], [10], [11].

Second, most existing approaches overlook the VNF under-utilization incurred by

resource reservation which deteriorates the resource scarcity in edge clouds.

VNFs fall into two categories, i.e., I/O-bound and non-I/O bound. Fig-
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ure 6.1(a) shows a flow monitor that is I/O-bound. Since the incoming traffic

rate is 20 which is greater than the processing capacity, the flow monitor becomes

overloaded. Figure 6.1(b) illustrates the existing solutions. The blue numbers

represent the processing capacity of a VNF. The black numbers denote the traffic

rate in a link. Existing solutions vertically scale up the flow monitor by adding

the processing capacity to 20. Nevertheless, the output rate of the flow monitor is

still 15 as flow monitor is limited by bandwidth. In other words, simply scaling up

the VNF by increasing the processing capacity cannot improve the performance of

I/O-bound VNFs. Similarly, load balancer is also saturated because the incoming

traffic is greater than its processing capacity. Existing horizontal solutions scale

out by spawning two new instances with a processing capacity of 10. However,

the incoming traffic rates are 7 and 8, respectively. Hence, horizontal scaling leads

to resource over-provisioning and VNF under-utilization.

In this chapter, we propose a bottleneck-aware VNF scaling and traffic routing

approach to overcome the above limitations.

6.2 Problem Description

6.2.1 Delay at VNFs in Edge Clouds

The average delay at VNFs in edge clouds is formulated in Equation (6.1).

Dnj
i
(t) =

1

µnj
i
(t)− λnj

i
(t) (6.1)

where µnj
i
(t) and λnj

i
(t) are the processing rate and the arrival rate at VNF instance

nj
i , respectively.

6.2.2 Link Delay in Inter-cloud Links

Similarly, the average delay in inter-cloud links is defined as follows. We use Cuv(t)

to denote the processing capacity of the link uv. We use Buv(t) to represent the

total traffic rate in the link uv.

Luv(t) =
1

Cuv(t)−Buv(t)
, ∀(u, v) ∈ E (6.2)

6.2.3 Objective Function

We formulate the ILP problem with respect to delays both in edge clouds and

inter-cloud links. We approximate these delays by using the average delays.
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min
∑
f∈F

∑
v∈V

∑
nj
i∈N

x
nj
i

fv(t)Dnj
i
(t)

+
∑
f∈F

∑
uv∈E

∑
nj
i ,n

j
i+1∈N

y
nj
in

j
i+1

fuv (t)Luv(t)
(6.3)

where indicator variable x
nj
i

fv(t) equals 1 if flow f traverses the VNF instance

nj
i hosted in edge cloud v. Similarly, indicator variable y

nj
in

j
i+1

fuv (t) equals 1 if flow

f traverses the virtual link nj
in

j
i+1 mapped to the link uv.

∑
nj
i∈ni

∑
v∈V

x
nj
i

fv(t) = 1, ∀ni ∈ N , ∀f ∈ F (6.4)

∑
f∈F

∑
nj
i∈N

x
nj
i

fv(t)cnj
i
(t) ≤ Cv(t), ∀v ∈ V (6.5)

∑
f∈F

∑
nj
i ,n

j
i+1∈N

y
nj
in

j
i+1

fuv (t)bfuv(t) ≤ Cbw
uv (t) (6.6)

Equation (6.4) guarantees that every flow traverses only one instance of each VNF.

Equation (6.5) guarantees that the required processing capacities must not exceed

the remaining processing capacity Cv(t). Also, equation (6.6) guarantees that the

traffic arrival rate must not exceed the remaining bandwidth capacity Cbw
uv (t).

6.3 B-Scale Algorithm

The VNF scaling problem has been proved to be NP-hard in many existing works

[2], [62]. Assume that every VNF instance nj
i represents an item m with the size

mj
i .req, where the size mj

i .req = cnj
i
. Let every edge cloud v denote a knapsack k

with a capacity kv.cap = Cv. Assume that the profit of assigning flows to every

VNF instance is the negative of the flow delays. Then, our VNF scaling problem

becomes finding VNF placement for every flow that maximizes the total profit. In

other words, our problem becomes a Multiple Knapsack Problem (MKP) which is

NP-hard[146].

6.3.1 Online Bottleneck-aware VNF Scaling Algorithm

Algorithm 3 shows the online bottleneck-aware VNF scaling algorithm. For each

VNF ni, B-Scale first observes the actual traffic rate. If the traffic rate decreases

compared with time slot t−1, the algorithm checks the existing VNF instances. If

the traffic rate of a VNF instance equals 0, the algorithm removes the instance. If
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Algorithm 3: Online bottleneck-aware VNF Scaling Algorithm for
Latency Minimization
Input : Request r, Graph G;

1 for t = 1,2,...,T do
2 for ni in N do
3 Observe actual traffic rate λni(t) at VNF ni;
4 if λni(t) ≤ λni(t− 1) then

5 for nj
i in ni do

6 if λ
nj
i
(t) == 0 then

7 Release nj
i ;

8 else if λ
nj
i
(t) ≤ µ

nj
i
(t) then

9 Scale down µ
nj
i
(t) to λ

nj
i
(t);

10 end

11 end

12 else
13 Call Place() to deploy VNFs;
14 Call Traffic steer() to route traffic;

15 end

16 end

17 Update residual processing Cv(t) and bandwidth capacity Cbw
uv (t), ∀v ∈ V,

∀uv ∈ E ;
18 end

the traffic rate at an instance is smaller than its processing capacity, the algorithm

scales down the processing capacity µnj
i
to the traffic rate λnj

i
. Otherwise, if the

traffic rate λnj
i
(t) increases compared with time slot t − 1, the algorithm invokes

Algorithm 4 to embed new VNF instances. If all VNF instances are deployed,

the algorithm uses Algorithm 5 to steer the traffic for service chains. Finally, the

algorithm updates the bandwidth and processing capacities of the system.

6.3.2 New Instance Placement in Edge Clouds

First, Algorithm 4 computes the k shortest paths between ingress and egress nodes.

After that, the algorithm checks the VNF category. If the VNF is non-I/O bound,

the algorithm performs vertical scaling (scale-up) based on the required new pro-

cessing capacity µnew
nj
i

(t). Then, we use the first-fit edge cloud on the path p to

host this instance. In this thesis, the term “first-fit” refers to the first edge cloud

with sufficient processing capacity. If the vertical scaling fails due to the lim-

ited capacity in the edge cloud, the algorithm performs horizontal scaling instead.

The algorithm computes the required number of new instances znewni
(t). Then,

the algorithm assigns the new instances to the first-fit edge cloud. In contrast, if

the VNF is I/O bound, the algorithm only performs horizontal scaling as vertical

scaling cannot improve the performance.
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Algorithm 4: Place()

1 Compute the set P of k shortest paths between S and T ;
2 for shortest path p in P do
3 if ni is non-I/O bound then
4 Compute new required processing capacity µnew

ni
(t);

5 Choose the first-fit edge cloud v in p;
6 Perform vertical scaling acc. to µnew

ni
(t);

7 if Vertical scaling failed then
8 Compute the number of new instances znewni

(t);

9 foreach newly created instance nj
i do

10 Choose first-fit edge cloud v in p;
11 Creating new instance horizontally;

12 end

13 end

14 end
15 else if ni is I/O bound then
16 Compute the number of instance znewni

(t);

17 foreach newly created instance nj
i do

18 Choose first-fit edge cloud v in p;
19 Creating new instance horizontally;

20 end

21 end

22 end

6.3.3 Traffic Steer Algorithm

Algorithm 5 shows the traffic steering algorithm. Different from existing solutions

that use the shortest path algorithm, we use a k shortest path algorithm to take

advantage of non-shortest paths. To avoid the complex state migration problem,

we assume that we only steer new coming packets (“new flow”) to these newly

created instances at time slot t. In other words, the routing of existing packets

remains unchanged.

At time slot t, there are several newly created instances for each VNF ni. For

every new flow f in the service chain, the algorithm assigns it to the least used

instance nj
i . Then, between every VNF instance nj

i and the next-hop VNF in-

stance nj
i+1, the algorithm creates multiple candidate paths P ′ from the k shortest

algorithm. After that, the algorithm selects the first-fit path with sufficient band-

width to route the traffic.

6.3.4 Compared Algorithms

To benchmark the proposed algorithm, we adopt the Simulated Annealing (SA)

algorithm [153]. We select SA because most existing approaches in the literature

cannot be directly applied to our scenario. SA can approximate the global optimal
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Algorithm 5: Traffic steer()

1 for new flow f do
2 foreach VNF ni do

3 Find the least used new instance nj
i ;

4 Check the residual processing capacity of nj
i ;

5 Assign f to nj
i ;

6 end
7 foreach VNF ni do

8 for p′ in k shortest paths P ′ between nj
i and next-hop instance nj

i+1 do
9 if Check bandwidth succeeds then

10 Steer the flow along p′;
11 Update resource capacities;
12 Break;

13 end

14 end

15 end

16 end

solution as it is an efficient searching technique for optimization problems [154].

The SA first generates an initial solution. Then, SA changes the placement of one

SFC to generate a new solution. After that, SA makes decisions to accept or reject

the new solution. SA only accepts a solution if all capacity constraints are fulfilled.

If the objective is not improved after one hundred iterations or the temperature

is cooled down to 1, SA stops the termination and accepts the solution. We

do not implement other solutions for comparison from the existing literature as

they do not consider the VNF category in the scaling problem. This algorithm is

implemented by us.

6.4 Performance Evaluation

6.4.1 Simulation Setup

We have conducted extensive simulations with Network simulator 3 (NS3) on a

server with 105 GB RAM and an Intel(R) Xeon(R) E5645 processor with 24 cores.

We derive the SFC requests from .pcap files of the CAIDA traces [155]. Each SFC

comprises a chain of 3 VNFs randomly selected from Table 6.1.

Table 6.1: Processing time and processing capacity of VNFs
VNF Processing time Max. Processing capacity I/O-bound
Firewall 120µs 400Mbps Yes
IDS 160µs 600Mbps No
Caching 83µs 580Mbps No
Flow monitor 200µs 550Mbps Yes
Load balancer 647.5µs 500Mbps No
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The processing time and capacity of VNFs are derived from related works [132].

Similarly, the VNF category is derived from [10], [9]. To adapt to the resource

capacities in the system, we proportionally scale down the VNF processing capa-

city by a factor of 10. The average packet length is assumed to be 512 bytes. The

processing capacity for each edge cloud is 400 Mbps. Also, the link bandwidth is

400 Mbps. The traffic change ratio is obtained from the work [156].

To prove the performance of the proposed algorithm, the metrics include the

average latency, the execution time, the acceptance rate of request, the VNF

utilization rate, the cumulative distribution function of the end-to-end latency.

6.4.2 Offline B-Scale in Topology Agis

We first compare B-Scale and SA with the offline optimum achieved by the ILP

solver Gurobi [157]. As the ILP solver cannot find feasible solutions for large-scale

networks or hundreds of SFC requests in a reasonable time, we only implement

the ILP solver in a small-scale topology named Agis that consists of 25 nodes and

30 links from Internet Topology Zoo.
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Figure 6.2: Average latency

Figure 6.2 demonstrates that SA achieves only 1% more latency that the offline

optimum which suggests that SA approximates the global optimum well. Mean-

while, B-Scale only leads to 4% more latency compared with the optimum because

B-Scale balances the network traffic among multiple VNF instances.

Figure 6.3 shows the execution time of the ILP solver, B-Scale and SA. Fig-

ure 6.3 illustrates that the ILP solver spends over 3400 seconds to find feasible

solutions for only 20 requests. This result suggests that the ILP solver cannot

scale well for substantial SFC requests. In contrast, B-Scale and SA only spend
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Figure 6.3: Execution time

12 seconds in the worst case. Overall, the results imply that SA can closely ap-

proximate the global optimum in a reasonable time and hence we use SA to prove

the performance of B-Scale in a larger topology in the following sections.

6.4.3 Offline B-Scale in Topology TW

In this section, we use a US topology named TW consists of 76 nodes and 123

links from the Internet Topology Zoo because it contains a wide range of geo-

distributed networks. First, we demonstrate the performance of B-Scale in an

offline manner which means that all SFC requests start to run at the beginning and

only end when the simulation is ended. We conducted two sets of experiments that

simulated light and heavy workloads. Light means that the overall traffic demand

is low in light of the processing and bandwidth capacities of the system, heavy

means that it is high. The maximum traffic demand of light and heavy workloads

are about 5400 and 9500 Mb/s, respectively. We run the B-Scale algorithm over a

different number of SFC requests ranging from 20 to 700 with a step size 40. More

SFC requests result in more network traffic which requires more VNF instances

to process.

Figure 6.4 demonstrates that B-Scale closely matches the optimal solution

approximated by SA both in light and heavy workloads. For the light workload,

the latency of both algorithms only rises slightly from 12.2 to 17.2 seconds as the

bandwidth resources are sufficient on the shortest path between ingress and egress

pairs. In contrast, the average latency of SA increases from 11.3 to 14.5 seconds.

The average latency of both algorithms increases sharply for heavy workloads

when the number of SFC requests is greater than 340. This is because the band-
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Figure 6.4: Average latency

width resources are gradually insufficient. The average latency of B-Scale ranges

from 12.7 to 37.45 seconds. Similarly, SA achieves 11.84∼36.31 seconds. The

latency achieved by B-Scale is only 9% higher than that of SA on average. This

is because B-Scale balances the traffic among different paths and different VNF

instances.
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Figure 6.5: Acceptance rate

Figure 6.5 illustrates the acceptance rate which is the ratio between successfully

embedded SFC requests and the total number of SFC requests. For light workload,

B-Scale and SA both lead to almost 100% acceptance rate. The rationale is that

the computation and network resources are sufficient with the light workload.

For heavy workload, B-Scale achieves 87∼100% acceptance rate while that of SA
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ranges from 89∼100%. B-Scale achieves only 2∼3% lower acceptance rate in a few

cases compared with SA. This is because SA spends more time iterating different

solutions and hence can find more feasible solutions than B-Scale. Overall, B-Scale

achieves comparable acceptance rate to SA.
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Figure 6.6: VNF utilization rate

Figure 6.6 shows the mean VNF utilization rate. The utilization rate is the

ratio of used processing capacity to the total processing capacity of a VNF. The

VNF utilization rate of B-Scale fluctuates around 78∼82% while that of SA ranges

from 62∼67%. This is because B-Scale applies different kinds of scaling on dif-

ferent types of VNF. For either light or heavy workload, B-Scale performs better

by about 15% in most cases. This result suggests that B-Scale effectively uses

the computation resources and hence mitigates resource under-utilization in edge

clouds.

Figure 6.7 illustrates the total execution time of both algorithms. The average

execution time of B-Scale for each request ranges from 0.16 to 0.3 seconds. In

contrast, SA achieves 0.3 to 2.9 seconds to process a request. B-Scale remarkably

reduces the execution time by up to 87.2%. This is because SA iterates at least

over hundreds of iterations to find a near-optimal solution. These results indicate

that B-Scale works in a fast manner and hence is suitable for online orchestration.

6.4.4 Online B-Scale in Topology TW

We evaluate the performance of both algorithms in an online manner wherein

SFC requests arrive and leave at different time slots. The average life cycle of

every flow is 1000 seconds. We simulated the experiments over 18000 seconds.

Figure 6.8 illustrates the distribution of the end-to-end latency. We observe that
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Figure 6.7: Execution time
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Figure 6.8: CDF of latency

the 99th percentile latency of B-Scale is 25 ms. In contrast, that of SA is 22.5 ms.

This result indicates that B-Scale leads to a comparable performance compared

with SA. The rationale is that B-Scale distributes the VNF instances on the next

shortest path with sufficient bandwidth. By this means, link congestion and VNF

overload are avoided. As most SFC requests are deployed within 25 ms, the

performance of B-Scale is proved.

Figure 6.9 demonstrates that B-Scale achieves about 79∼85% VNF utilization

rate while that of SA fluctuates around 64∼72%. B-Scale significantly improves

the VNF utilization rate by up to 15 % which indicates that B-Scale effectively uses

the computation resources and mitigates VNF under-utilization. The rationale is

that B-Scale uses both vertical and horizontal scaling simultaneously to optimize
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Figure 6.9: VNF utilization rate

the VNF utilization. These findings suggest that B-Scale improves the resource

utilization and hence is suitable for SFC orchestration in edge clouds because the

resource capacity of edge clouds is limited compared with public clouds.
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Figure 6.10: Number of instances

Figure 6.10 illustrates the number of VNF instances over a wide range of time

slots. B-Scale remarkably reduces the number of VNF instances by about 33 %

which suggests that B-Scale uses the system resources in an efficient manner. This

is because B-Scale strikes a nice balance between vertical and horizontal scaling

based on the VNF category.

Finally, Figure 6.11 shows the number of hops for flows. We observe that 99th

percentile number of hops is 10.5 for B-Scale while that of SA is 9.5. This is
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because B-Scale strives to consolidate VNF instances on the shortest path and

hence avoids using longer paths. This result indicates that B-Scale approximates

the number of hops achieved by SA.

Overall, B-Scale achieves near-optimal end-to-end latency (9% higher) approx-

imated by SA at the cost of light degradation in acceptance rate. Also, B-Scale

significantly reduces the execution time by about 87.2% which means that it scales

well especially when the problem size increases. Moreover, B-Scale significantly

improves the VNF utilization rate by 15% which mitigates the resource scarcity

in edge clouds.

6.5 Summary

In this chapter, we study the end-to-end latency minimization problem while im-

proving the VNF utilization at edge clouds by using VNF scaling. We first formu-

late an ILP problem by considering delays at VNFs and links. These delays are

approximated by the average delay derived from Little’s Theorem.

We propose a novel VNF scaling algorithm with respect to the VNF category.

The proposed algorithm checks every VNF's category. If the VNF is non-I/O

bound, the proposed algorithm strives to perform vertical scaling before hori-

zontal scaling. If the VNF is I/O bound, the proposed algorithm performs only

horizontal scaling as vertical scaling cannot improve the VNF performance in this

case. Besides, a k shortest path based algorithm is proposed to steer the network

traffic which takes advantage of non-shortest path. Different from most existing

works that use the shortest path between VNF pairs, we choose the k shortest
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path as the bandwidth becomes insufficient in peak hours. Extensive trace-driven

experiments show that the proposed algorithm achieves near-optimal performance.

Also, the proposed algorithm efficiently reduces the execution time by up to 87.2%

and improves the VNF utilization rate by about 15%. These findings suggest that

the proposed algorithm handles SFC requests in a fast manner and mitigates the

resource under-utilization in edge clouds. This is of significant importance because

edge clouds usually have limited resource capacity.

In the next chapter, we conclude this thesis and point out future works.



Chapter 7

Conclusion and Future work

This chapter summarizes the main conclusions of this thesis. Furthermore, this

chapter includes a discussion about promising directions for the future work.

7.1 Conclusion

This thesis proposes a distributed architecture for service chaining in multi-domain

networks.

The proposed distributed architecture for service chains significantly reduces

the deployment cost by 12∼20% compared to benchmark algorithms. Also, the

proposed DFSC achieves a factor of 1.15 compared to the optimal solution. The

rationale is that DFSC jointly considers the resource and routing costs. The

proposed distributed architecture significantly reduces the decision-making time

by 70%. This is because the proposed distributed architecture distributes the

decision-making process to multiple orchestrators. The trade-off is that we observe

a 2∼3% performance degradation in the acceptance rate of SFC requests. This is

because benchmark algorithms search more candidate paths compared to DFSC.

These results imply that DFSC makes decisions in a fast manner while reducing

the deployment cost for the network operators.

Moreover, we proposed B-Scale algorithm to handle the time-varying network

traffic. Extensive simulation shows that the proposed B-Scale algorithm achieves

about 9% higher latency than that of SA in a large-scale network. However, B-

Scale reduces the execution time by up to 87.2% compared with SA. Also, B-Scale

improves the VNF utilization rate by 15% which suggests that B-Scale is suitable

for SFC orchestration in edge clouds. The rationale is that B-Scale considers the

VNF category when performing VNF scaling. These results suggest that B-Scale

processes the SFC request in a fast manner and reduces the resource waste in VNF

scaling by improving the VNF utilization rate.

84
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7.2 Future Work

The work presented in this thesis can be extended in the following aspects.

� Regarding the scalability for the system-level, there are many other research

objectives such as energy optimization and reliability. Another promising

research path is exploring the cloud-edge federation with respect to pro-

grammable network devices such as P4 switch. Programmable devices run

network applications on network devices and hence offer the speed and agil-

ity without altering the existing network architecture. For example, a P4-

defined data plane can be used to create service chains between virtual and

physical network functions. Also, sophisticated forwarding rules can be im-

plemented and executed for the incoming traffic flows. The matching process

can be processed by a combination of packet header fields and user-defined

metadata.

� Regarding the scalability for the VNF-level, finding an appropriate approach

to jointly achieve VNF scaling and migration still remains open for research.

Another promising direction is to predict the traffic demand and the invoca-

tion pattern of network functions by using techniques such as Arima model,

machine learning and Histogram. For instance, ARIMA model can be used

to analyze and forecast time series data. A histogram can be used to exhibit

the invocation pattern of network functions. Machine learning approaches

such as TensorFlow can also be used to predict incoming workloads. By this

means, the algorithm can proactively allocate computational resources for

VNFs and hence optimize the SFC deployment.
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