posted on 2013-11-15, 14:35authored byXiangjun Kong
Increasing market demands for highly customised products with shorter time-to-market and
at lower prices are forcing manufacturing systems to be built and operated in a more efficient
ways. In order to overcome some of the limitations in traditional methods of automation
system engineering, this thesis focuses on the creation of a new approach to Virtual
Commissioning (VC).
In current VC approaches, virtual models are driven by pre-programmed PLC control
software. These approaches are still time-consuming and heavily control expertise-reliant as
the required programming and debugging activities are mainly performed by control
engineers. Another current limitation is that virtual models validated during VC are difficult
to reuse due to a lack of tool-independent data models. Therefore, in order to maximise the
potential of VC, there is a need for new VC approaches and tools to address these limitations.
The main contributions of this research are: (1) to develop a new approach and the related
engineering tool functionality for directly deploying PLC control software based on
component-based VC models and reusable components; and (2) to build tool-independent
common data models for describing component-based virtual automation systems in order to
enable data reusability. [Continues.]
Funding
Loughborough University
History
School
Mechanical, Electrical and Manufacturing Engineering