Thesis-1996-Soutter.pdf (13.43 MB)

An integrated architecture for operating procedure synthesis

Download (13.43 MB)
thesis
posted on 30.11.2010 by James Soutter
The task of creating the operating procedures for a processing plant is time consuming and requires the involvement of key members of the design team. As one of the consequences, the writing of operating procedures is often put off till the final stages of the design process. However, some operability problems will remain hidden in the design until the operating procedure is considered. These problems are expensive to fix because they require undoing some of the design decisions that have already been made. This thesis reports on research into the automatic creation of operating procedures, a field of research sometimes called Operating Procedure Synthesis (OPS). One motivation for OPS research is to develop a tool that can detect operability problems in the design of a plant and thus allow operability problems to be considered earlier in the design process reducing the cost of resolving these problems. Previous OPS systems are generally based around single techniques such as mixed integer linear programming. All the techniques that have been examined in the past are strong in some aspects of OPS and weak in some other aspects. There is no single technique that is strong in all areas of OPS. As a result, no previous OPS system is able to generate all the procedures used as examples in the OPS literature. This thesis presents a new approach to OPS. In this approach, OPS is viewed as a set of distinct but related subtasks. Three subtasks have been identified and examined in this work, namely planning, safety and valve sequencing. Algorithms have been developed to address each of these three subtasks individually. These algorithms have been integrated to form a single OPS system by using a common representation of the operating procedure to be created.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Publisher

© James Kinnaird Soutter

Publication date

1996

Notes

A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.

EThOS Persistent ID

uk.bl.ethos.360869

Language

en

Exports

Logo branding

Exports