Thesis-2011-Lopes.pdf (22.43 MB)
Download fileAudio-coupled video content understanding of unconstrained video sequences
thesis
posted on 2011-04-20, 14:03 authored by Jose E.F.C. LopesUnconstrained video understanding is a difficult task. The main aim of this thesis is to
recognise the nature of objects, activities and environment in a given video clip using
both audio and video information. Traditionally, audio and video information has not
been applied together for solving such complex task, and for the first time we propose,
develop, implement and test a new framework of multi-modal (audio and video) data
analysis for context understanding and labelling of unconstrained videos.
The framework relies on feature selection techniques and introduces a novel algorithm
(PCFS) that is faster than the well-established SFFS algorithm. We use the framework for
studying the benefits of combining audio and video information in a number of different
problems. We begin by developing two independent content recognition modules. The
first one is based on image sequence analysis alone, and uses a range of colour, shape,
texture and statistical features from image regions with a trained classifier to recognise
the identity of objects, activities and environment present. The second module uses audio
information only, and recognises activities and environment. Both of these approaches
are preceded by detailed pre-processing to ensure that correct video segments containing
both audio and video content are present, and that the developed system can be made
robust to changes in camera movement, illumination, random object behaviour etc. For
both audio and video analysis, we use a hierarchical approach of multi-stage
classification such that difficult classification tasks can be decomposed into simpler and
smaller tasks.
When combining both modalities, we compare fusion techniques at different levels of
integration and propose a novel algorithm that combines advantages of both feature and
decision-level fusion. The analysis is evaluated on a large amount of test data comprising
unconstrained videos collected for this work. We finally, propose a decision correction
algorithm which shows that further steps towards combining multi-modal classification
information effectively with semantic knowledge generates the best possible results.
History
School
- Science
Department
- Computer Science
Publisher
© José Eduardo Fernandes Canelas LopesPublication date
2011Notes
A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.EThOS Persistent ID
uk.bl.ethos.544105Language
- en