Loughborough University
Browse

Bond strength of concrete patch repairs: an evaluation of test methods and the influence of workmanship and environment

Download (24.53 MB)
thesis
posted on 2010-11-10, 14:53 authored by Youguang Pan
Experiments were carried out to study the effect of workmanship and environmental conditions on bond strength for concrete patch repairs. Four repair materials, sand/cement mortar, acrylic modified cementitious mortar, SBR modified cementitious mortar, and flowing concrete, were tested with mainly three test methods (core pull-off test, patch compressive test, and patch flexural test). At the beginning of this project, slant shear tests were also carried out. In the study of the effect of workmanship, the following parameters were included: surface roughness, surface cleanliness, surface soundness, moisture condition, application method, bond coat mistiming, repair material mistiming, and curing methods. In the study of the effect of environmental conditions, four parameters were considered: high temperature curing followed by drying shrinkage, high temperature curing followed by thermal cycling, low temperature curing, and low temperature curing followed by freeze/thaw cycling. A rougher surface produces a higher bond strength, but the increase depends on individual repair material. Sand/cement mortar favours a rough surface, but polymer modified mortars are not very sensitive to surface roughness. Environmental conditions affect the bond strength development, but the effect varies with each repair material. Test results suggest that low temperature curing should be avoided for polymer modified cementitious mortars. In addition to the experimental study, theoretical analyses were carried out to evaluate the available bond test methods. The evaluation was concentrated on answering the following questions: (1) What kind of factors will influence conductinga bond test? (2) What are the response of each factor involved to a specific test method? (3) What kind of influences are crucial in ensuring the full development of the bond strength? (4) Which factors are important to achieve a durable repair? and (5) What kind of a test can be used to monitor the quality of these crucial factors? In total, about 800 tests were conducted (500 core pull-off tests, 90 patch compressive tests, 100 patch flexural tests, and 80 slant shear tests).

History

School

  • Architecture, Building and Civil Engineering

Publisher

© Youguang Pan

Publication date

1995

Notes

A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.

EThOS Persistent ID

uk.bl.ethos.297146

Language

  • en