Thesis-2012-Atkinson.pdf (9.49 MB)
Download file

Collaborative adaptive accessibility and human capabilities

Download (9.49 MB)
posted on 23.08.2012, 08:04 by Matthew T. Atkinson
This thesis discusses the challenges and opportunities facing the field of accessibility, particularly as computing becomes ubiquitous. It is argued that a new approach is needed that centres around adaptations (specific, atomic changes) to user interfaces and content in order to improve their accessibility for a wider range of people than targeted by present Assistive Technologies (ATs). Further, the approach must take into consideration the capabilities of people at the human level and facilitate collaboration, in planned and ad-hoc environments. There are two main areas of focus: (1) helping people experiencing minor-to-moderate, transient and potentially-overlapping impairments, as may be brought about by the ageing process and (2) supporting collaboration between people by reasoning about the consequences, from different users perspectives, of the adaptations they may require. A theoretical basis for describing these problems and a reasoning process for the semi-automatic application of adaptations is developed. Impairments caused by the environment in which a device is being used are considered. Adaptations are drawn from other research and industry artefacts. Mechanical testing is carried out on key areas of the reasoning process, demonstrating fitness for purpose. Several fundamental techniques to extend the reasoning process in order to take temporal factors (such as fluctuating user and device capabilities) into account are broadly described. These are proposed to be feasible, though inherently bring compromises (which are defined) in interaction stability and the needs of different actors (user, device, target level of accessibility). This technical work forms the basis of the contribution of one work-package of the Sustaining ICT use to promote autonomy (Sus-IT) project, under the New Dynamics of Ageing (NDA) programme of research in the UK. Test designs for larger-scale assessment of the system with real-world participants are given. The wider Sus-IT project provides social motivations and informed design decisions for this work and is carrying out longitudinal acceptance testing of the processes developed here.



  • Science


  • Computer Science


© Matthew Tylee Atkinson

Publication date



A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.

EThOS Persistent ID