posted on 2015-10-29, 12:45authored byWilliam Johnson
The creation and use of models is critical not only to the scientific process, but also to life in general. Selected features of a system are abstracted into a model that can then be used to gain knowledge of the workings of the observed system and even anticipate its future behaviour. A key feature of the modelling process is the identification of commonality. This allows previous experience of one model to be used in a new or unfamiliar situation. This recognition of commonality between models allows standards to be formed, especially in areas such as measurement. How everyday physical objects are measured is built on an ingrained acceptance of their underlying commonality.
Complex systems, often with their layers of interwoven interactions, are harder to model and, therefore, to measure and predict. Indeed, the inability to compute and model a complex system, except at a localised and temporal level, can be seen as one of its defining attributes. The establishing of commonality between complex systems provides the opportunity to find common metrics. This work looks at two dimensional cellular automata, which are widely used as a simple modelling tool for a variety of systems. This has led to a very diverse range of systems using a common modelling environment based on a lattice of cells. This provides a possible common link between systems using cellular automata that could be exploited to find a common metric that provided information on a diverse range of systems. An enhancement of a categorisation of cellular automata model types used for biological studies is proposed and expanded to include other disciplines. The thesis outlines a new metric, the C-Value, created by the author. This metric, based on the connectedness of the active elements on the cellular automata grid, is then tested with three models built to represent three of the four categories of cellular automata model types. The results show that the new C-Value provides a good indicator of the gathering of active cells on a grid into a single, compact cluster and of indicating, when correlated with the mean density of active cells on the lattice, that their distribution is random. This provides a range to define the disordered and ordered state of a grid. The use of the C-Value in a localised context shows potential for identifying patterns of clusters on the grid.
Funding
NECTISE
History
School
Mechanical, Electrical and Manufacturing Engineering
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
2015
Notes
A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.