posted on 2017-06-14, 15:42authored byAbdul R. bin Yaakub
This thesis is concerned with the numerical
solutions of initial value problems with ordinary
differential equations and covers
single step integration methods.
focus is to study the numerical
the various aspects of
Specifically, its main
methods of non-linear
integration formula with a variety of means based on the
Contraharmonic mean (C˳M) (Evans and Yaakub [1995]), the
Centroidal mean (C˳M) (Yaakub and Evans [1995]) and the
Root-Mean-Square (RMS) (Yaakub and Evans [1993]) for
solving initial value problems.
the applications of the second
It includes a study of
order C˳M method for
parallel implementation of extrapolation methods for
ordinary differential equations with the ExDaTa schedule
by Bahoshy [1992]. Another important topic presented in
this thesis is that a fifth order five-stage explicit
Runge Kutta method or weighted Runge Kutta formula [Evans
and Yaakub [1996]) exists which is contrary to Butcher
[1987] and the theorem in Lambert ([1991] ,pp 181).
The thesis is organized as follows. An introduction
to initial value problems in ordinary differential
equations and parallel computers and software in Chapter
1, the basic preliminaries and fundamental concepts in
mathematics, an algebraic manipulation package, e.g.,
Mathematica and basic parallel processing techniques are
discussed in Chapter 2. Following in Chapter 3 is a
survey of single step methods to solve ordinary
differential equations. In this chapter, several single
step methods including the Taylor series method, Runge
Kutta method and a linear multistep method for non-stiff
and stiff problems are also considered.
Chapter 4 gives a new Runge Kutta formula for
solving initial value problems using the Contraharmonic
mean (C˳M), the Centroidal mean (C˳M) and the Root-MeanSquare
(RMS). An error and stability analysis for these
variety of means and numerical examples are also
presented. Chapter 5 discusses the parallel
implementation on the Sequent 8000 parallel computer of
the Runge-Kutta contraharmonic mean (C˳M) method with
extrapolation procedures using explicit
assignment scheduling
Kutta RK(4, 4) method
(EXDATA) strategies. A
is introduced and the
data task
new Rungetheory
and
analysis of its properties are investigated and compared
with the more popular RKF(4,5) method, are given in
Chapter 6. Chapter 7 presents a new integration method
with error control for the solution of a special class of
second order ODEs. In Chapter 8, a new weighted Runge-Kutta
fifth order method with 5 stages is introduced. By
comparison with the currently recommended RK4 ( 5) Merson
and RK5(6) Nystrom methods, the new method gives improved
results. Chapter 9 proposes a new fifth order Runge-Kutta
type method for solving oscillatory problems by the use
of trigonometric polynomial interpolation which extends
the earlier work of Gautschi [1961]. An analysis of the
convergence and stability of the new method is given with
comparison with the standard Runge-Kutta methods.
Finally, Chapter 10 summarises and presents
conclusions on the topics
discussed throughout the thesis.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
1996
Notes
A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.