Loughborough University
Browse

Computer vision based techniques for fall detection with application towards assisted living

Download (51.61 MB)
thesis
posted on 2013-04-08, 07:55 authored by Miao Yu
In this thesis, new computer vision based techniques are proposed to detect falls of an elderly person living alone. This is an important problem in assisted living. Different types of information extracted from video recordings are exploited for fall detection using both analytical and machine learning techniques. Initially, a particle filter is used to extract a 2D cue, head velocity, to determine a likely fall event. The human body region is then extracted with a modern background subtraction algorithm. Ellipse fitting is used to represent this shape and its orientation angle is employed for fall detection. An analytical method is used by setting proper thresholds against which the head velocity and orientation angle are compared for fall discrimination. Movement amplitude is then integrated into the fall detector to reduce false alarms. Since 2D features can generate false alarms and are not invariant to different directions, more robust 3D features are next extracted from a 3D person representation formed from video measurements from multiple calibrated cameras. Instead of using thresholds, different data fitting methods are applied to construct models corresponding to fall activities. These are then used to distinguish falls and non-falls. In the final works, two practical fall detection schemes which use only one un-calibrated camera are tested in a real home environment. These approaches are based on 2D features which describe human body posture. These extracted features are then applied to construct either a supervised method for posture classification or an unsupervised method for abnormal posture detection. Certain rules which are set according to the characteristics of fall activities are lastly used to build robust fall detection methods. Extensive evaluation studies are included to confirm the efficiency of the schemes.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Publisher

© Miao Yu

Publication date

2013

Notes

A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.

EThOS Persistent ID

uk.bl.ethos.570217

Language

  • en

Usage metrics

    Mechanical, Electrical and Manufacturing Engineering Theses

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC