posted on 2018-05-24, 13:50authored byRosni Abdullah
The increasing availability of parallel computers is having a very significant impact on
all aspects of scientific computation, including algorithm research and software
development in numerical linear algebra. In particular, the solution of linear systems,
which lies at the heart of most calculations in scientific computing is an important
computation found in many engineering and scientific applications.
In this thesis, well-known parallel algorithms for the solution of linear systems are
compared with implicit parallel algorithms or the Quadrant Interlocking (QI) class of
algorithms to solve linear systems. These implicit algorithms are (2x2) block
algorithms expressed in explicit point form notation. [Continues.]
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
1997
Notes
A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy at Loughborough University.