Loughborough University
Thesis-2005-Burton.pdf (61.49 MB)

Design for rapid manufacture: developing an appropriate knowledge transfer tool for industrial designers

Download (61.49 MB)
posted on 2011-01-14, 11:45 authored by Michael J. Burton
Numerous works have been produced on the topic of Design for Manufacturing (DFM) to better educate the designers of products as to various methods of manufacturing and their specific requirements. It is the common aim of these works to eliminate so called "over the wall" product development in which procedurally ignorant designers pass largely un-producible design concepts to manufacturers, who are then required to make necessary refinements and changes. When applied correctly, DFM results in the efficient and economical production of well-designed products, whose forms have been attuned to the particular requirements of their final method of production at an early stage of development. However, one aspect of using such approaches is that design intent is frequently compromised for the sake of manufacturability and innovative design concepts are often dismissed as being unfeasible. Recent advances in additive manufacturing technologies and their use in the direct manufacture of end-use products from digital data sources has brought about a new method of production that is known as Rapid Manufacturing (RM). Unlike conventional subtractive machining processes, such as milling and turning which generate forms by removing material from a stock billet, RM parts are grown from an empty part bed using the controlled addition of specialised build materials. Additive manufacturing requires no forming tools, is unrestricted by many conventional process considerations and is capable of producing practically any geometry. The freedoms that are associated with this technology facilitate the design and realisation of product concepts that would be unachievable with any other method of production. This promotes an almost boundless design philosophy in which innovative product solutions can be designed to best meet the needs of specification criteria, rather than the production process with which they are to be made. However, unlike other forms of manufacturing, the newness of this technology means that there is no proven aid or tool to assist industrial designers in exploiting the freedoms that it offers. Using information that was collated in the literature review and case study projects, a systematic design approach was proposed and then tested in a series of user trials with groups of industrial design students and practicing industrial design professionals. The results of these trials are discussed, showing a common acknowledgement from both groups that the proposed DFRM tool was of assistance and that it had an influence upon their design work. However, whilst the student group were generally receptive toward tool uptake, the experienced designers showed more of a reluctance to abandon their own "tried and tested" methods in favour of the unknown and unproven approach. It is concluded that this attitude would be fairly representative of wider opinion and that the future uptake of any such tool would be reliant upon sufficient evidence of its successful application. Hence, suggestions are made for future work to continue tool development and for more validation trials to be conducted with its intended user group.



  • Mechanical, Electrical and Manufacturing Engineering


Loughborough University

Rights holder

© Michael John Burton

Publication date



A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.

EThOS Persistent ID



  • en


Ian Campbell ; Richard Hague

Qualification name

  • PhD

Qualification level

  • Doctoral

This submission includes a signed certificate in addition to the thesis file(s)

  • I have submitted a signed certificate

Usage metrics

    Mechanical, Electrical and Manufacturing Engineering Theses


    Ref. manager