The design and analysis of various distributed space time block coding
schemes for cooperative relay networks is considered in this thesis.
Rayleigh frequency flat and selective fading channels are assumed to
model the links in the networks, and interference suppression techniques
together with an orthogonal frequency division multiplexing (OFDM)
type transmission approach are employed to mitigate synchronization
errors at the destination node induced by the different delays through
the relay nodes.
Closed-loop space time block coding is first considered in the context
of decode-and-forward (regenerative) networks. In particular, quasi orthogonal
and extended orthogonal coding techniques are employed for
transmission from four relay nodes and parallel interference cancellation
detection is exploited to mitigate synchronization errors. Availability
of a direct link between the source and destination nodes is studied.
Outer coding is then added to gain further improvement in end-to-end
performance and amplify-and-forward (non regenerative) type networks
together with distributed space time coding are considered to reduce
relay node complexity. A novel detection scheme is then proposed
for decode-and-forward and amplify-and-forward networks with closed-loop
extended orthogonal coding and closed-loop quasi-orthogonal coding
which reduce the computational complexity of the parallel interference cancellation. The near-optimum detector is presented for relay
nodes with single or dual antennas. End-to-end bit error rate simulations
confirm the potential of the approach and its ability to mitigate
synchronization errors.
Funding
none
History
School
Mechanical, Electrical and Manufacturing Engineering
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
2015
Notes
A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.