Loughborough University
Thesis-2004-DenmanJohnson.pdf (3.38 MB)

Dynamics of synaptically coupled McKean neurons

Download (3.38 MB)
posted on 2018-11-22, 14:41 authored by Matthew G. Denman-Johnson
The work in this thesis uses geometric dynamical systems methods to derive phase equations for networks of weakly connected McKean relaxation oscillators. Importantly, this particular single neuron model, with appropriate modifications, is shown to mimic very closely the behaviour of the more biophysically complicated Hodgkin–Huxley model, whilst remaining analytically tractable (albeit in some singular limit). We consider realistic forms of axo-dendritic synaptic coupling with chemical synapses modelled as the convolution of some input spike train with an appropriate temporal kernel. Using explicit forms for the phase response curves (PRCs), for a range of single neuron models, we are able to derive explicit formulas for the phase interaction function in an arbitrary synaptically interacting network of neural oscillators. The PRC for the McKean model is calculated exactly, whilst those for other models is found numerically. In both cases we make extensive use of Fourier representations for synaptic currents, to investigate the effects of axonal, synaptic and dendritic delays on the existence and stability of phase-locked states. [Continues.]



  • Science


  • Mathematical Sciences


© Matthew Denman-Johnson

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date



A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy at Loughborough University.


  • en

Usage metrics

    Mathematical Sciences Theses