This thesis reports the methods, the deployment strategies and the resulting system
performance improvement of in-building environmental modification. With the
increasing use of mobile computing devices such as PDAs, laptops, and the expansion
of wireless local area networks (WLANs), there is growing interest in increasing
productivity and efficiency through enhancing received signal power. This thesis
proposes the deployment of waveguides consisting of frequency selective surfaces
(FSSs) in indoor wireless environments and investigates their effect on radio wave
propagation. The received power of the obstructed (OBS) path is attenuated
significantly as compared with that of the line of sight (LOS) path, thereby requiring
an additional link budget margin as well as increased battery power drain. In this
thesis, the use of an innovative model is also presented to selectively enhance radio
propagation in indoor areas under OBS conditions by reflecting the channel radio
signals into areas of interest in order to avoid significant propagation loss.
An FSS is a surface which exhibits reflection and/or transmission properties as a
function of frequency. An FSS with a pass band frequency response was applied to an
ordinary or modified wall as a wallpaper to transform the wall into a frequency
selective (FS) wall (FS-WALL) or frequency selective modified wall (FS-MWALL).
Measurements have shown that the innovative model prototype can enhance 2.4GHz (IEEE 802.11b/g/n) transmissions in addition to the unmodified wall, whereas
other radio services, such as cellular telephony at 1.8GHz, have other routes to
penetrate or escape.
The FSS performance has been examined intensely by both equivalent circuit
modelling, simulation, and practical measurements. Factors that influence FSS
performance such as the FSS element dimensions, element conductivities, dielectric
substrates adjacent to the FSS, and signal incident angles, were investigated. By
keeping the elements small and densely packed, a largely angle-insensitive FSS was
developed as a promising prototype for FSS wallpaper. Accordingly, the resultant can
be modelled by cascading the effects of the FSS wallpaper and the ordinary wall (FSWALL) or modified wall (FS-MWALL). Good agreement between the modelled,
simulated, and the measured results was observed.
Finally, a small-scale indoor environment has been constructed and measured in a
half-wave chamber and free space measurements in order to practically verify this
approach and through the usage of the deterministic ray tracing technique. An initial
investigation showing that the use of an innovative model can increase capacity in
MIMO systems. This can be explained by the presence of strong multipath
components which give rise to a low correlated Rayleigh Channel. This research work
has linked the fields of antenna design, communication systems, and building
architecture.
History
School
Mechanical, Electrical and Manufacturing Engineering