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Abstract 

Insulin resistance is central to the pathogenesis of non-alcoholic fatty liver disease (NAFLD) 

and type 2 diabetes mellitus (T2DM). Intrahepatic triglyceride (IHTG), the primary feature of 

NAFLD, strongly predicts insulin resistance in the liver and peripheral (skeletal muscle and 

adipose) tissues. Hepatokines (e.g. fibroblast growth factor 21 (FGF21), leukocyte cell-derived 

chemotaxin 2 (LECT2), follistatin, selenoprotein P, and fetuin-A) are liver-derived proteins 

with capacity to exert endocrine effects and may potentially modulate the link between IHTG 

and peripheral insulin sensitivity/glycaemic control. Exercise is integral to the management of 

NAFLD and T2DM, with evidence suggesting that high-intensity exercise may provide the 

greatest benefits.  

Chapter 4 of this thesis demonstrates that, in individuals without chronic metabolic disease, 

plasma concentrations of FGF21 and LECT2 are higher, and follistatin lower, in individuals 

with overweight or obesity compared with normal weight individuals. Furthermore, FGF21 

and follistatin are transiently elevated for up to 6 h after acute aerobic exercise (60 min at 60% 

V̇O2 peak). The response of follistatin to acute moderate-intensity exercise is also present in 

individuals with impaired glucose regulation (Chapter 5), but the response of FGF21 is 

abolished. A single bout of low-volume high-intensity interval training has no effect on FGF21, 

follistatin or fetuin-A in individuals with dysglycaemia (Chapter 5). Chapter 6 demonstrates 

that six weeks of sprint interval training (SIT) is feasible for men with NAFLD and reduces 

IHTG despite no change in body weight. Peripheral insulin sensitivity tends to increase after 

SIT but hepatic insulin sensitivity and circulating hepatokines remain unchanged. Through 

meta-analyses, Chapter 7 confirms that exercise training reduces IHTG, even in the absence of 

weight loss. However, the magnitude of this effect is greater when weight loss occurs and 

benefits increase proportionally. Exercise training improves basal hepatic insulin sensitivity, 

but evidence in this area is currently limited (Chapter 7). 

Collectively, the studies in this thesis demonstrate that some hepatokines may be sensitive to 

acute and chronic changes in energy metabolism. However, further evidence is required before 

definitive statements can be made. Exercise training, including SIT, has the potential to reduce 

IHTG in men with NAFLD, even in the absence of weight loss. However, the greatest benefits 

on IHTG will likely be elicited when exercise training is performed in combination with dietary 

energy restriction to elicit sustained reduction in body weight.  
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HIRI – hepatic insulin resistance index 

HISI – hepatic insulin sensitivity index 

HOMA-IR – homeostatic model 

assessment of insulin resistance 

HR – heart rate 

HRmax – maximum heart rate 

IFG – impaired fasted glucose 

IGT – impaired glucose tolerance 

IHTG – intrahepatic triglyceride 

IPAQ – international physical activity 

questionnaire 

IQR – interquartile range 

IRS1/2 – insulin receptor substrate 1/2 

LDL – low-density lipoprotein 

LECT2 – leukocyte cell-derived 

chemotaxin 2 

LPA – lysophosphatidic acid 

LPL – lipoprotein lipase 

LV-HIIT – low-volume high-intensity 

interval training 

Matsuda ISI – Matsuda insulin sensitivity 

index 

METs – metabolic equivalents of task 

MRI – magnetic resonance imaging 

NAFLD – non-alcoholic fatty liver disease 

NASH – non-alcoholic steatohepatitis 

NEFA – non-esterified fatty acids 

NF-κB – nuclear factor kappa B 

OGTT – oral glucose tolerance test 

PAR-Q – physical activity readiness 

questionnaire 

PI3k – phosphatidylinositol 3-kinase 

PKC – protein kinase C (includes θ [theta] 

and ε [epsilon] isoforms)  

PPAR – peroxisome proliferator-activated 

receptor (includes α [alpha] and γ 

[gamma] isoforms) 

PPO – peak power output 

RCT – randomised controlled trial 

RER – respiratory exchange ratio 

RPE – rating of perceived exertion 

ScAT – subcutaneous adipose tissue 

SD – standard deviation 

SEM – standard error of the mean 

SFA – saturated fatty acid 

SIT – sprint interval exercise training 

SeP – selenoprotein P 
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SREBP1c – sterol regulatory element 

binding protein 1c 

TG – triglyceride 

TGF – transforming growth factor 

TZDs – thiazolidinediones 

T2DM – type 2 diabetes mellitus 

UPR – unfolder protein response 

US - ultrasound 

VAT – visceral adipose tissue 

V̇CO2 – carbon dioxide production 

(volume of carbon dioxide produced 

per unit time) 

VLDL – very low-density lipoprotein 

V̇O2 – oxygen uptake (volume of oxygen 

utilised per unit time) 

V̇O2 peak – peak oxygen uptake 

WC – waist circumference 

%EGPsupp – percentage suppression of 

endogenous glucose production 

(typically by low-dose insulin infusion) 

1H-MRS – proton magnetic resonance 

spectroscopy 

95% CI – 95% confidence interval 
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CHAPTER 1 

INTRODUCTION
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Obesity is a chronic disease characterised by the excess accumulation of body fat, which is 

associated with several physical and metabolic consequences, and increases risk of disease-

specific and all-cause mortality (Bray, 2004; Whitlock et al., 2009; The Global BMI Mortality 

Collaboration, 2016; Heymsfield and Wadden, 2017). The prevalence of obesity has risen 

globally over recent decades (NCD Risk Factor Collaboration, 2016) and, with the 

simultaneous improvement in the management of infectious diseases, has become established 

as a leading health concern in modern societies (Heymsfield and Wadden, 2017). If current 

trends continue, it is predicted that, by 2030, there may be as many as three billion individuals 

worldwide that are overweight or obese (Kelly et al., 2008). It is estimated that approximately 

27% of the United Kingdom (UK) population are obese, many of whom are severely obese, 

and a further 35% are overweight (NCD Risk Factor Collaboration, 2016). The high prevalence 

of obesity, and the number of associated co-morbidities, make obesity treatment a substantial 

economic burden; one that is predicted to increase (Wang et al., 2011; Bray et al., 2016).  

The pathogenesis of obesity is highly complex and obesity risk is determined by several 

modifiable and non-modifiable factors (Heymsfield and Wadden, 2017; Schwartz et al., 2017). 

With rare genetic conditions aside, however, obesity is predominantly the result of prolonged 

energy surplus. Consequently, physical inactivity and excessive energy intake (as well as 

deleterious dietary composition) are important modifiable risk factors that are independently 

associated with increased obesity risk (Yumuk et al., 2015). It is notable that reductions in 

physical activity over recent decades, particularly occupational physical activity, mirror the 

increased prevalence of overweight and obesity (Church et al., 2011) 

There has been increased recognition over recent years that adipose tissue is not simply a site 

for lipid storage but is, in fact, a metabolically-active endocrine organ (McGown, Birerdinc 

and Younossi, 2014). Accordingly, the metabolic consequences of obesity remain an area of 

growing interest and research. Obesity is associated with the increased risk of several metabolic 

co-morbidities, including type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD), 

chronic kidney disease (CKD) and non-alcoholic fatty liver disease (NAFLD) (Bray et al., 

2016; Heymsfield and Wadden, 2017). As a result, the clinical management of obesity requires 

not only a focus on achieving and maintaining a healthy body weight, but must also consider 

the management of these associated conditions. 

In recent years, there has been a rapid growth in the attention dedicated to NAFLD from both 

researchers and clinicians alike. In the UK, the number of hospital admissions due to NAFLD 
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has risen exponentially since 1998 and this is likely due to a combination of both increased 

obesity prevalence and increased clinical awareness (Williams et al., 2014). NAFLD is 

characterised by the ectopic accumulation of lipid in the liver (hepatic steatosis), which occurs 

independently of excessive alcohol consumption (Marchesini et al., 2016; Chalasani et al., 

2018). Hepatic steatosis may occur in isolation, but it is the development of associated hepatic 

inflammation and/or fibrosis (non-alcoholic steatohepatitis; NASH), which substantially 

increases the risk of advanced liver complications (cirrhosis, hepatocellular carcinoma (HCC), 

and liver failure), as well as liver-specific and all-cause mortality (Rinella, 2015; Than and 

Newsome, 2015). NAFLD is now a leading chronic liver disease worldwide, with an estimated 

global prevalence of approximately 25% (Younossi et al., 2016). Furthermore, NASH-related 

HCC is the most rapidly growing cause of liver transplantation and is set to surpass hepatitis C 

as the principal indication (Wong, Cheung and Ahmed, 2014; Rinella and Sanyal, 2016).  

In the context of hepatic complications, therefore, the development of NASH represents an 

important aspect in the natural history of NAFLD. However, the clinical impact of hepatic 

steatosis per se should not be dismissed. Hepatic steatosis (measured as intrahepatic 

triglyceride; IHTG) is strongly associated with insulin resistance in several tissues, including 

skeletal muscle, adipose tissue and the liver (Korenblat et al., 2008; Bril, Barb, et al., 2017), 

and this has several implications for glycaemic control. Although the nature of these 

implications is highly complex, peripheral (skeletal muscle and adipose tissue) insulin 

resistance predominantly disrupts glucose uptake, whilst hepatic insulin resistance contributes 

to elevated endogenous glucose production (EGP) (Taylor, 2008). Unsurprisingly, therefore, 

NAFLD is commonly considered the hepatic component of the metabolic syndrome and is 

predictive of incident T2DM (Kotronen and Yki-Järvinen, 2008; Armstrong et al., 2014; Byrne 

and Targher, 2015; Mantovani et al., 2018). Insulin resistance is also heavily implicated in the 

pathogeneses of CKD and CVD (Laakso and Kuusisto, 2014; Artunc et al., 2016; Xu and 

Carrero, 2017) and may, therefore, represent a central feature underlying the relationships 

between NAFLD and the myriad of obesity-associated conditions mentioned previously 

(Armstrong et al., 2014; Byrne and Targher, 2015). It is notable that the leading cause of death 

in individuals with NAFLD is CVD (Targher, Day and Bonora, 2010; Targher et al., 2016). 

Several direct and indirect mechanisms have the potential to mediate the relationship between 

hepatic steatosis and peripheral insulin resistance (Byrne and Targher, 2015; Meex and Watt, 

2017). One exciting, novel mechanism has emerged from the recent identification of several 

exclusively or predominantly liver-synthesised proteins, which have capacity to be secreted 
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into the circulation and exert endocrine effects in peripheral tissues. Consistent with the 

nomenclature of myokines and adipokines, these liver-secreted proteins have been termed 

“hepatokines” (Stefan and Häring, 2013; Takamura, Misu and Kaneko, 2016). Several of these 

hepatokines appear to be regulated by nutritional status (both acute and chronic), with hepatic 

steatosis implicated as a mediator of their synthesis and/or secretion (Meex et al., 2015). 

Furthermore, some hepatokines have been shown to modulate peripheral insulin sensitivity or 

glycaemic control, attracting further interest into their clinical importance in NAFLD and other 

obesity-associated co-morbidities (Stefan and Häring, 2013; Meex et al., 2015; Takamura, 

Misu and Kaneko, 2016).  

There are currently no approved pharmacological treatments specifically for the treatment of 

NAFLD (Marchesini et al., 2016; Rinella and Sanyal, 2016). There may be many reasons for 

this, but one important issue is the methodological difficulties and ethical considerations of 

using repeated liver biopsy (Festi et al., 2013). Liver biopsy is highly invasive but, at present, 

regulatory bodies necessitate its use for the measurement of histological outcomes when testing 

pharmacological interventions. Several non-invasive imaging methods exist for the assessment 

of outcomes in NAFLD (Alkhouri and Feldstein, 2016; Bawden, Scott and Aithal, 2017). 

However, until suitable methods are developed, validated and approved by regulatory agencies 

for the measurement of histological outcomes (particularly hepatic inflammation and fibrosis), 

collecting sufficient experimental evidence to gain approval of pharmacological treatments in 

NAFLD will remain challenging (Rinella and Sanyal, 2016). 

Consequently, lifestyle interventions remain the cornerstone of treatment in NAFLD 

(Marchesini et al., 2016; Chalasani et al., 2018), and these are implemented with the primary 

aim of reducing body weight through the restriction of energy intake and increasing physical 

activity. The consumption of a more favourable dietary composition may also elicit 

independent benefits (Marchesini et al., 2016; Chalasani et al., 2018). These guidelines 

(discussed in more detail within Chapter 2 of this thesis) provide generic goals for individuals, 

including weight loss targets and recommendations for both daily energy restriction and total 

weekly physical activity. Notably, however, they also fully endorse the use of a personalised 

approach, where each patient’s treatment is discussed and agreed between a multidisciplinary 

team of healthcare professionals and, most importantly, in consultation with the patient 

themselves (Marchesini et al., 2016; Chalasani et al., 2018). Holistic patient care means that 

agreed treatments should target the favourable modification of as many lifestyle risk factors as 

possible (diet, physical activity, smoking status etc.). However, specific interventions should 
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be tailored to patient preferences and circumstances (Marchesini et al., 2016; Chalasani et al., 

2018). This applies to the broader treatment approach (some individuals may favour energy 

restriction, whilst others prefer to focus on increased physical activity) as well as the specific 

details of the intervention employed. For example, when attempting to engage in more regular 

structured exercise, some patients may favour continuous moderate-intensity aerobic exercise 

(CME) training, whilst others may prefer high-intensity interval training (HIIT) or progressive 

resistance exercise. This individualised approach does, however, necessitate the development 

of several interventions that vary in nature and are supported by strong experimental evidence, 

to provide patients with multiple options to explore. 

With this context in mind, the research reported in this thesis had three primary aims: 

1. To examine the effects of acute exercise on several circulating hepatokines and their 

associations with anthropometric and circulating clinical biomarkers in individuals of 

different weight status and glycaemic control. 

2. To test the feasibility and efficacy of sprint interval training (SIT) as a novel 

intervention for patients with NAFLD, particularly exploring its effects on IHTG and 

tissue-specific (hepatic and peripheral) insulin sensitivity. 

3. To collate the existing literature and summarise the effects of exercise training on IHTG 

and hepatic insulin sensitivity, exploring the mediating influence of weight loss. 

To do this, this thesis contains three laboratory-based experimental studies (Chapters 4, 5 and 

6), which collectively target aims one and two, and concludes with a systematic review and 

meta-analysis (Chapter 7), which targets aim three.  

Specifically, Chapter 4 investigates the influence of a single bout of CME on several candidate 

hepatokines in normal weight and overweight/obese men. Relationships between fasted plasma 

hepatokine concentrations, anthropometric measures and circulating cardiometabolic risk 

factors are also explored. Chapter 5 then extends these findings by conducting exploratory 

preliminary analyses on an ongoing clinical trial comparing the effects of acute CME or low-

volume HIIT (LV-HIIT) on hepatokine responses in a patient group with dysregulated glucose 

metabolism. Chapter 6 presents the results of a 6-week SIT intervention in patients with 

NAFLD on hepatic steatosis (assessed by magnetic resonance spectroscopy) and hepatic and 

peripheral insulin sensitivity (determined by dual-step hyperinsulinaemic, euglycaemic clamp). 

Hepatokines were also measured in Chapter 6 to explore changes in fasted circulating 

concentrations with training. Finally, the systematic review and meta-analysis presented in 
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Chapter 7 systematically collates the available literature investigating the impact of exercise 

training on hepatic steatosis and hepatic insulin sensitivity in individuals with, or at high risk 

of, NAFLD. Importantly, inclusion criteria restrict eligible studies to those using the same 

techniques implemented in Chapter 6. Subgroup analyses and meta-regression in Chapter 7 

explore the impact of exercise mode (aerobic, HIIT or resistance exercise) and intensity, 

intervention duration and the influence of associated weight loss on changes in hepatic steatosis. 

The studies described in this thesis were core studies conducted within the National Institute 

of Health Research (NIHR) Leicester-Loughborough Diet Lifestyle and Physical Activity 

Biomedical Research Unit (“Leicester-Loughborough BRU”). The studies outlined in Chapters 

4 and 5 were each designed and conducted in collaboration with other PhD students sponsored 

by the BRU.  The data presented in Chapter 4 has been published (Sargeant, Aithal, et al., 2018) 

and was selected by the editor as the featured article within its issue (Appendix I). Other 

outcomes of this trial have also been published (Douglas et al., 2017). The study presented in 

Chapter 6, which was a collaborative project with the NIHR Nottingham Digestive Diseases 

BRU, has also been published (Sargeant, Bawden, et al., 2018), as has the systematic review 

and meta-analysis presented in Chapter 7 (Sargeant, Gray, et al., 2018). 
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CHAPTER 2 

REVIEW OF LITERATURE 
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2.1  Purpose and overview of this chapter 

This chapter presents a detailed but succinct review of the literature that provides the 

underlying rationale for the studies presented in this thesis. The literature cited throughout is 

intended to be thorough, but is not an exhaustive list. Topics that are related but not specific to 

the focus of this thesis are mentioned in brief and appropriate published reviews are 

recommended for the interested reader. 

This chapter starts by providing an overview of the pathogenesis of obesity and ectopic lipid 

storage before presenting an outline of the discovery, prevalence and natural history of NAFLD. 

This is followed by a more detailed account of the pathogenesis and treatment of hepatic 

steatosis, the central component of NAFLD, and its relationship with obesity and T2DM; 

focussing particularly on the role of physical inactivity and structured exercise training. This 

chapter concludes by presenting recent evidence concerning a selection of exclusively or 

predominantly liver-secreted proteins, termed ‘hepatokines’, and their potential implications 

for metabolic health as a novel mechanism mediating ‘cross-talk’ between the liver and 

peripheral tissues.  

2.2  Obesity 

2.2.1 Pathogenesis of obesity 

The pathogenesis of obesity is highly complex, but in most individuals its development is 

ultimately governed by a chronic state of positive energy balance (Heymsfield and Wadden, 

2017; Schwartz et al., 2017). Energy balance is the sum of all processes related to energy intake 

and expenditure and, when intake exceeds expenditure, the excess energy is stored. Storage 

primarily occurs in the form of lipid (triglyceride; TG) accumulation in adipose tissue leading 

to increased body weight (Heymsfield and Wadden, 2017). Importantly, this increased storage 

is reversible and when a prolonged state of negative energy balance is achieved (through 

sufficient reductions in energy intake, increases in energy expenditure, or combinations of both) 

weight loss will occur (Heymsfield and Wadden, 2017). From an evolutionary perspective, the 

capacity of humans to store large amounts of energy in the form of lipid-rich adipose tissue is 

advantageous, conserving this energy during periods of surplus for times of relative famine 

(Schwartz et al., 2017). However, in the modern environment, where energy is freely available 

and the requirements for physical exertion are reduced, this adaptation predisposes individuals 

to excessive weight gain. 
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The underlying factors that determine energy intake and expenditure in humans are numerous 

and interested readers are directed to published reviews that discuss the pathogenesis of obesity 

in depth (Van Der Klaauw and Farooqi, 2015; Heymsfield and Wadden, 2017; Schwartz et al., 

2017). A combination of genetic, developmental and environmental factors interact to 

determine obesity risk for a given individual. Many of these factors are fundamental to the 

pathogenesis of NAFLD and will be discussed in more depth in subsequent sections of this 

literature review. 

2.2.2 Lipid storage in obesity 

During chronic energy surplus, lipid accumulation occurs in several different sites (or 

‘compartments’), including both adipose and non-adipose tissues. The relative distribution of 

lipids across these tissues varies between individuals and, importantly, the associated metabolic 

risk for each compartment is not equal (Shen et al., 2003; Blüher, 2013). Consequently, a given 

individual may have high levels of body fat yet remain relatively metabolically healthy in 

comparison to an apparently leaner person with a more adverse distribution of lipid storage 

(Thomas et al., 2012; Blüher, 2013). In most individuals, the majority of lipid storage occurs 

in subcutaneous adipose tissue (ScAT) and this compartment is associated with the lowest 

metabolic risk (Tchkonia et al., 2013). In a further level of complexity, the regional distribution 

of ScAT between upper body, lower body and abdominal sites may also be influential 

(Tchkonia et al., 2013; Karpe and Pinnick, 2015). The visceral adipose tissue (VAT) 

compartment is a smaller absolute site for fat accumulation compared to ScAT, but is 

associated with a greater risk of metabolic dysregulation (Tchkonia et al., 2013; Heymsfield 

and Wadden, 2017). Even in normal weight individuals, those with low ScAT and high VAT 

display greater metabolic risk compared to those with high ScAT and low VAT (Thomas et al., 

2012). In most individuals, when a state of chronic overnutrition and physical inactivity is 

sustained, the ability to preferentially store lipids within ScAT, becomes overwhelmed and an 

increased accumulation within VAT and other ectopic sites occurs. This may be further 

exacerbated by the development of adipose tissue dysfunction contributing to reduced storage 

capacity (Tan and Vidal-Puig, 2008; Blüher, 2013). Non-adipose sites of ectopic lipid storage 

include the vasculature, skeletal muscle, cardiac, renal and pancreatic tissues as well as, of 

particular relevance to this thesis, the liver (Szendroedi and Roden, 2009; Byrne and Targher, 

2014). The ectopic accumulation of lipids in the liver is termed ‘hepatic steatosis’ and is the 

fundamental component of NAFLD. 
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2.3  Non-alcoholic fatty liver disease (NAFLD) 

2.3.1 An introduction and historical overview 

Hepatic steatosis is defined clinically as the presence of TG in more than 5% of hepatocytes or 

a liver fat content (intrahepatic triglyceride; IHTG) greater than 5.56%, depending on the 

measurement technique used (Marchesini et al., 2016; Chalasani et al., 2018). Importantly, a 

diagnosis of NAFLD requires that hepatic steatosis occurs in the absence of excessive alcohol 

intake, viral infection and steatogenic medications, as well as other secondary sources. 

Consequently, most cases of NAFLD are fundamentally a result of deleterious lifestyle habits; 

usually a combination of excessive energy intake, adverse dietary composition and low 

physical activity (Marchesini et al., 2016; Chalasani et al., 2018). Given that these are 

underlying components of positive energy balance, it is not surprising that the majority of 

NAFLD diagnoses occur in the context of overweight or obesity (Chalasani et al., 2018). 

NAFLD describes a spectrum of conditions in which hepatic steatosis can either manifest in 

isolation (often referred to as ‘benign’ or ‘simple’ steatosis) or in combination with varying 

degrees of hepatic inflammation and/or fibrosis, known as NASH. In some cases, NAFLD may 

proceed to cirrhosis, HCC and liver failure, which may ultimately result in liver transplantation 

and/or death (Rinella, 2015; Than and Newsome, 2015; Marchesini et al., 2016).  

For decades, it was firmly believed that hepatic steatosis in the absence of viral infection was 

the result of excess alcohol consumption. Individuals who denied high alcohol intake were 

simply believed to be lying (Leslie, 2015). Then, in 1979, Adler and Schaffner reported 

findings from 29 overweight patients who, through individual interviews with three separate 

doctors, were considered to be no greater than “light social drinkers” (Adler and Schaffner, 

1979). Liver biopsy samples from these patients all showed signs of hepatic lipid accumulation 

and patients were equally distributed between the categories of ‘fatty liver’, ‘fatty hepatitis’, 

‘fatty fibrosis’ and ‘fatty cirrhosis’. These findings led the authors to conclude that “obesity 

per se can lead to “severe liver damage” (Adler and Schaffner, 1979). A year later, Jurgen 

Ludwig and colleagues, from the Mayo Graduate School of Medicine, published similar 

findings from 20 individuals undergoing serial biopsy between the years of 1969 and 1979 

(Ludwig et al., 1980). These individuals were moderately obese but “denied alcohol abuse 

categorically”, a claim that was supported by evidence from laboratory tests and consultation 

with relatives. Nonetheless, these patients presented with progressive histological changes that 

were compatible with alcoholic liver disease, including “striking fatty changes with evidence 
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of lobular hepatitis” and “evidence of fibrosis”. Three individuals also developed cirrhosis 

(Ludwig et al., 1980). As a result, Ludwig and colleagues were the first to propose the term 

NASH to describe this distinct medical entity (Ludwig et al., 1980). For clinicians who 

remained doubtful, the rapid increase in the prevalence of fatty liver in children and adolescents 

provided further compelling evidence (Leslie, 2015). 

2.3.2 Diagnosis 

Exact definitions of hepatic steatosis differ subtly depending on the measurement technique 

used. Liver biopsy with subsequent chemical or histological assessment of tissue composition 

is the longest-standing method for the diagnosis of NAFLD. Using this method, hepatic 

steatosis is considered a fat percentage greater than 5% of liver volume or weight, or when 

more than 5% of hepatocytes visibly contain TG under microscopy (Fabbrini and Magkos, 

2015). More recent advances in non-invasive imaging techniques, including ultrasound (US) 

and computed tomography (CT), has led to their routine use for early NAFLD diagnoses using 

similar diagnostic thresholds for liver fat content. Due to its high cost and invasive nature, liver 

biopsy is now reserved for when more progressive NAFLD is suspected, as it remains the only 

clinically approved method for the assessment of hepatic inflammation, fibrosis and cirrhosis. 

Circulating liver enzymes (alanine (ALT) and aspartate (AST) aminotransferases and gamma 

glutamyl transpeptidase (GGT)) are biomarkers of liver disease but are poorly correlated with 

IHTG and are insensitive to changes that occur (Charatcharoenwitthaya, Lindor and Angulo, 

2012). However, most cases of NAFLD are diagnosed during clinical follow-up of abnormal 

liver function tests. Improvements in magnetic resonance techniques have allowed more 

sensitive non-invasive methods to be developed, namely proton magnetic resonance 

spectroscopy (1H-MRS) and, more recently, magnetic resonance imaging (MRI). In a study of 

2,349 individuals deemed to be at low risk of developing NAFLD, the 95th percentile of IHTG 

as assessed using 1H-MRS was 5.56% (Szczepaniak et al., 2005). Subsequently, this value has 

become an established threshold for the diagnosis of NAFLD when using this technique. 

Notably, however, this threshold criteria is not based on any relationship between IHTG and 

metabolic or clinical outcomes (Fabbrini and Magkos, 2015). For example, non-linear 

relationships have been reported between IHTG and tissue-specific insulin sensitivity, with 

suggestions that hepatic insulin sensitivity in particular (measured as percentage suppression 

of EGP) may be substantially impaired at IHTG content much lower than 5.56% (Bril, Barb, 

et al., 2017). Furthermore, magnetic resonance procedures remain expensive and may not be 

practical in all individuals. As such, it is often reserved for clinical research studies. 



~ 12 ~ 
 

2.3.3 General prevalence and common risk factors 

NAFLD is now a leading cause of liver disease worldwide and the most prevalent in Western 

countries (Marchesini et al., 2016; Cusi et al., 2017). Its rapid rise in prevalence over recent 

decades make it an important health concern in both adults and children (Vernon, Baranova 

and Younossi, 2011; Than and Newsome, 2015). Prevalence estimates vary, primarily 

depending on the diagnostic technique used, but a recent meta-analysis of 45 studies with a 

total of over 8.5 million individuals reported the global prevalence of NAFLD to be 

approximately 25% [95% CI: 22.10 to 28.65%] (Younossi et al., 2016). When analysed by 

region, data specific to Europe were similar (21 studies; 230,685 individuals; prevalence 23.71% 

[16.1 to 33.5%]), as were those in the single study from the UK (1,118 individuals; prevalence 

26.39% [23.82 to 29.07%]) (Armstrong et al., 2012). It is suggested that poor detection and 

referral of suspected NAFLD in at risk populations within primary care means that these 

research studies likely underestimate the true NAFLD prevalence (Armstrong et al., 2012; 

Blais et al., 2015).  

The prevalence of NAFLD in normal weight individuals with no metabolic risk factors is 

between seven and 16% (Vernon, Baranova and Younossi, 2011; Younossi et al., 2016). 

However, this is substantially increased in individuals who are obese and greater further in 

those with additional metabolic risk factors or co-morbidities (Rinella, 2015; Younossi et al., 

2016; Cusi et al., 2017). NAFLD risk increases with body mass index (BMI) and waist 

circumference (WC) (Bedgoni et al., 2005), and is prevalent in as many as 90% of severely 

obese individuals undergoing bariatric surgery (Machado, Marques-Vidal and Cortez-Pinto, 

2006). Furthermore, approximately 50% of individuals with dyslipidaemia, defined as elevated 

circulating TG and reduced high-density lipoprotein (HDL), satisfy diagnostic criteria for 

NAFLD (Assy et al., 2000; K.-T. Wu et al., 2016). Conversely, dyslipidaemia is present in 

approximately 70% of patients with NAFLD (Younossi et al., 2016). NAFLD is also tightly 

associated with insulin resistance and T2DM (Wanless and Lentz, 1990; Portillo Sanchez et 

al., 2015; Younossi et al., 2016; Cusi et al., 2017) and these relationships are discussed in 

greater depth within subsequent paragraphs of this literature review (2.3.6 Associations of 

NAFLD with insulin resistance and T2DM).  

The risk of NAFLD increases with age (Vernon, Baranova and Younossi, 2011; Attar and Van 

Thiel, 2013; Brea and Puzo, 2013), although this may be mediated by an increased likelihood 

of other metabolic risk factors (Frith et al., 2009). NAFLD appears to be more common in men 
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but the reasons for this disparity are unclear and evidence is not unanimous (Vernon, Baranova 

and Younossi, 2011). Prevalence may also differ between ethnicities, with the risk of NAFLD 

greatest in Hispanic individuals and lower in white Caucasian and African Americans, 

respectively (Browning et al., 2004; Vernon, Baranova and Younossi, 2011; Bril, Portillo-

Sanchez, et al., 2017). These differences may be partly accounted for by differences in the 

PNPLA3 gene (Vernon, Baranova and Younossi, 2011) and, although a number of genes have 

been potentially implicated in the incidence and progression of NAFLD, variants in the 

PNPLA3 and TM6SF2 genes remains the most widely studied (Anstee, Targher and Day, 2013). 

Individuals who have the I148M and E167K variants in the PNPLA3 and TM6SF2 genes, 

respectively, have greater risk of both initial NAFLD incidence and more severe disease 

progression (Anstee, Targher and Day, 2013; Dongiovanni, Petta, Maglio, et al., 2015).  

It is important to consider that NAFLD and alcoholic liver disease may co-exist (Marchesini et 

al., 2016) and that individuals with high alcohol intake may also have several unrelated 

metabolic risk factors that promote NAFLD (Adams, 2013; Marchesini et al., 2016). Whilst 

distinguishing individuals with each of these diagnoses is common and understandable in a 

research environment, the adoption of this dichotomy may result in an underestimation of true 

NAFLD prevalence.  

2.3.4 Natural history 

The natural history of NAFLD is complex and not fully understood; not least because there 

appears to be distinct prognoses in individuals who maintain isolated steatosis and those that 

develop NASH (Rinella, 2015). Evidence from longitudinal studies is limited in number and 

varies in the use of diagnostic criteria and length of follow-up available. It is suspected, 

however, that approximately 20 to 25% of individuals with steatosis proceed to NASH and, of 

these, a further 20 to 40% will develop advanced fibrosis and/or cirrhosis over a 15-year period 

(Angulo, 2010; Caldwell and Argo, 2010). In the largest paired biopsy study to date, 108 

patients were followed over a median of 6.6 years (McPherson et al., 2015). Approximately 

40% of patients showed worsening of NAFLD, 40% showed no change and 20% displayed 

improvements. Many of the patients that improved lost weight and presented with 

improvements in other metabolic factors (McPherson et al., 2015). Furthermore, in a separate 

retrospective study of 420 NAFLD patients, approximately 12.5% died over a median follow-

up of 7.5 years; a significantly lower survival rate than that of a matched control population 

(Adams et al., 2005). Notably, this study did not distinguish individuals with simple steatosis 
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from those with NASH and it remains unclear if steatosis alone increases risk of mortality. It 

is well established, however, that all-cause and liver-related morbidity and mortality are 

substantially increased in individuals with NASH, compared to those with isolated steatosis 

and to the general population (Ekstedt et al., 2006; Söderberg et al., 2010; D. Kim et al., 2013; 

Younossi et al., 2016). Unsurprisingly, therefore, the progression to NASH represents a 

significant clinical outcome, particularly to hepatologists (Rinella, 2015; Than and Newsome, 

2015; Marchesini et al., 2016; Younossi et al., 2016).  

2.3.5 Hepatic steatosis vs. NASH 

Given the evidence outlined above, it is not surprising that steatosis alone is sometimes 

considered to be a benign condition (Teli et al., 1995; Caldwell and Argo, 2010). Whilst this 

may be partly true in the context of hepatic complications, this opinion is somewhat short-

sighted with respect to wider multidisciplinary care (Bril and Cusi, 2017). The pathogenesis of 

NASH is highly complex and it seems an oversimplification to assume a dichotomous 

distinction between patients who are simply destined to develop NASH and those that are not 

(Peverill, Powell and Skoien, 2014). Instead, it is more likely that elevated IHTG is one of 

several factors that contribute to the increased risk of developing NASH, and that the threshold 

of resistance to this progression differs between individuals (Peverill, Powell and Skoien, 2014). 

Furthermore, whilst a number of non-invasive tools are in development, invasive liver biopsy 

remains the only way to definitively diagnose NASH and predicting individuals that proceed 

from isolated steatosis to NASH is difficult (Rinella, 2015; Marchesini et al., 2016; Chalasani 

et al., 2018). Therefore, until a better understanding of the pathogenesis of NASH is gained, 

along with more effective methods to identify high-risk individuals, the prevention and 

treatment of hepatic steatosis should be a clinical priority. Finally, the impact of NAFLD on 

metabolic health is not restricted to hepatic complications and the accumulation of IHTG is 

strongly associated with many extra-hepatic complications, including insulin resistance 

(Korenblat et al., 2008; Gaggini et al., 2013; Bril, Barb, et al., 2017). Risk of metabolic co-

morbidities, such as T2DM, CVD and CKD, is also increased in patients with NAFLD 

(Armstrong et al., 2014; Musso et al., 2014; Byrne and Targher, 2015; Sinn et al., 2017). It is 

the associations between NAFLD, insulin resistance and T2DM that are of particular interest 

to this thesis and are, therefore, the focus of the subsequent paragraphs. 
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2.3.6 Associations of NAFLD with insulin resistance and T2DM 

Elevated IHTG is strongly associated with insulin resistance and is an independent predictor 

of insulin action in the liver, adipose tissue and skeletal muscle (Fabbrini et al., 2009). A study 

of 42 non-diabetic individuals (IHTG range: 0.7 to 45.5%) demonstrated strong linear 

correlations between IHTG and insulin sensitivity in the same three tissues (Korenblat et al., 

2008). A further study of 144 individuals with and without T2DM has confirmed these 

associations, but more complex non-linear relationships are suggested for hepatic and skeletal 

muscle tissues (Bril, Barb, et al., 2017). Specifically, whilst a progressive reduction in adipose 

tissue insulin sensitivity is apparent with increasing IHTG, it is suggested that insulin 

sensitivity in the liver and skeletal muscle are maximally impaired at IHTG content of 

approximately 1.5 and 4%, respectively (Bril, Barb, et al., 2017). Given these strong 

associations, it is not surprising that NAFLD is widely described as the hepatic manifestation 

of the metabolic syndrome (Buzzetti, Pinzani and Tsochatzis, 2016; Marchesini et al., 2016).  

Approximately two thirds of patients with T2DM have NAFLD (Williamson et al., 2011; 

Portillo Sanchez et al., 2015; Cusi et al., 2017), whilst 22% of patients with NAFLD have 

diabetes (Younossi et al., 2016). The study by Younossi and colleagues (Younossi et al., 2016) 

does not distinguish between different classes of diabetes, but it is likely that the majority of 

these patients have T2DM. NAFLD also predicts T2DM incidence (Balkau et al., 2010; 

Mantovani et al., 2018) and is associated with a 2- to 5-times greater risk of disease 

development (Armstrong et al., 2014). In a 14-year follow-up of 129 patients undergoing serial 

liver biopsies, 46% of those with steatosis alone developed T2DM, and this was even greater 

(~70%) in those with NASH (Ekstedt et al., 2006). Importantly, the resolution of NAFLD is 

associated with a significant reduction of T2DM incidence (Sung, Wild and Byrne, 2013). 

Lastly, the presence of both NAFLD and T2DM is associated with greater severity of both 

conditions. Specifically, patients with both conditions are more likely to develop advanced 

NAFLD, are more insulin resistant and have more severe hyperinsulinaemia (Vernon, 

Baranova and Younossi, 2011; Loomba et al., 2012; Lomonaco et al., 2016).  

2.3.7 Pathogenesis of hepatic steatosis  

The liver is heavily involved in human lipid metabolism but, in healthy individuals, is not a 

preferred lipid storage site. A healthy 70 kg man with a body fat percentage of 20% may store 

as little as 125 g of fat in their liver (Leslie, 2015). This is clearly an oversimplification, 

however, and large individual differences are inevitable. That said, the liver has tremendous 
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potential to store large amounts of excess lipid when circulating concentrations are high. This 

adaptation may be important to avoid the potentially harmful effects of lipotoxicity in other 

tissues; a hypothesis that may be extended to explain the accumulation of intramyocellular 

lipids, which is common in individuals with obesity or associated conditions such as NAFLD 

(Watt, 2009). As mentioned previously, however, the sustained accumulation of lipid in the 

liver is not without consequence for most individuals. As little as 1.5% and 4% IHTG is 

associated with a substantial impairment in hepatic and peripheral insulin sensitivity, 

respectively (Bril, Barb, et al., 2017). Furthermore, the 95th percentile of IHTG in a healthy 

adult population is only 5.56% (Szczepaniak et al., 2005). Collectively, this evidence supports 

the proposition that hepatic steatosis may be an adaptive response with acute benefits, but when 

excessive or sustained over time, the accumulative effects become deleterious and pathogenic 

(Tilg and Moschen, 2010; Anstee, Targher and Day, 2013).  

In its simplest form, the underlying cause of steatosis is an imbalance in the relationship 

between lipid supply and utilisation; when the supply of lipids to the liver overwhelms its 

ability to remove them, accumulation occurs (Fabbrini, Sullivan and Klein, 2010; Birkenfeld 

and Shulman, 2014; Brouwers et al., 2016). As such, IHTG is determined by the balance 

between: a) fasted and post-prandial adipose tissue lipolysis, b) uptake of dietary lipids into the 

liver, c) hepatic de novo lipogenesis (DNL) of carbohydrate, d) hepatic lipid oxidation, and e) 

synthesis and export of lipid-rich very low-density lipoproteins (VLDL). These processes are 

presented in Figure 2.1. A more detailed account of these mechanisms at a molecular level, can 

be found in a thorough published review (Perry et al., 2014).  

In obese individuals undergoing liver biopsy for suspected NAFLD, the majority of IHTG can 

be accounted for by the delivery of circulating non-esterified fatty acid (NEFA) and hepatic 

DNL (Donnelly et al., 2005). As such, in most cases, it is likely that changes in lipid supply 

are primarily responsible for the initial development of hepatic steatosis in NAFLD. 

Conversely, in accordance with the hypothesis that lipid storage as inert TG may be a protective 

adaptation, it may be that only when mechanisms of utilisation become overwhelmed and 

dysfunctional are associated co-morbidities, such as hepatic insulin resistance and NASH, 

developed (Tilg and Moschen, 2010). The factors underlying the development of hepatic 

steatosis and hepatic insulin resistance are outlined in subsequent paragraphs of this literature 

review. Readers interested in the pathogenesis of NASH are directed to a comprehensive 

review presenting the ‘multiple parallel hits hypothesis’ (Tilg and Moschen, 2010).  
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Figure 2.1 An overview of factors contributing to the pathogenesis of hepatic steatosis. Blood supply to/from the liver has been simplified for ease 
of interpretation. * Malonyl-coA inhibits lipid oxidation by reducing mitochondrial NEFA uptake. However, despite this, lipid oxidation is reportedly 
elevated in individuals with NAFLD compared to non-NAFLD controls. DNL: de novo lipogenesis; IHTG: intrahepatic triglyceride; NEFAs: non-esterified 
fatty acids; TG: triglyceride; VLDL: very low-density lipoprotein. Adapted from Fabbrini, Sullivan  & Klein, 2010; Brouwers et al., 2016 and Perry et al., 
2014. 
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2.3.7.1 Regulation of fatty acid uptake 

NEFA uptake into the liver is determined by the combination of its delivery in the circulation 

and the capacity for transport into hepatocytes (Fabbrini, Sullivan and Klein, 2010). Hepatic 

NEFA uptake is not strictly regulated so increased circulating concentrations result in increased 

uptake, providing capacity for transport into the cell is not a limiting factor (Bradbury, 2006). 

Circulating NEFAs cross the cell membrane through specific transport proteins, including fatty 

acid translocase (FAT)/CD36 (Samuel, Petersen and Shulman, 2010). Circulating TG cannot 

be taken up directly, so it is first hydrolysed by hepatic lipoprotein lipase (LPL) to NEFA 

(Goldberg, Eckel and Abumrad, 2009). In individuals with obesity or NAFLD, hepatic 

expression of LPL is increased (Westerbacka et al., 2007; Pardina et al., 2009), whilst 

expression of FAT/CD36 correlates positively with IHTG (Greco et al., 2008; Fabbrini et al., 

2009). Notably, FAT/CD36 expression is reduced following bariatric surgery and this 

reduction correlates with improvements in steatosis (Pardina et al., 2017). In contrast, 

FAT/CD36 expression in adipose tissue is reduced in patients with NAFLD (Greco et al., 2008; 

Fabbrini et al., 2009) and the activation of adipocyte LPL in response to insulin is blunted in 

obese individuals compared to healthy controls (Sadur, Yost and Eckel, 1984). Peroxisome 

proliferator-activated receptor gamma (PPARγ) is a nuclear receptor coded by the PPARG gene, 

which regulates NEFA uptake into adipose tissue and the liver, as well as adipocyte 

differentiation (Schupp and Lazar, 2010). Individuals with dominant negative mutations of the 

PPARG gene in adipose tissue develop NAFLD (Savage et al., 2003), whilst the deletion of 

hepatic PPARG in rodents protects against the development of hepatic steatosis (Matsusue et 

al., 2003). 

2.3.7.2 Adipose tissue lipolysis 

In periods of relative fasting, when plasma insulin concentrations are low and glucagon high, 

TG stores in adipose tissue are broken down via lipolysis and NEFAs are released into the 

blood (Frühbeck et al., 2014). Conversely, in the post-prandial state, when insulin levels are 

elevated, lipolysis is suppressed as part of the shift to a state of energy storage. Accordingly, 

when insulin resistance occurs in the adipose tissue, the regulation of lipolysis is impaired, 

resulting in elevated circulating NEFA under fasting conditions and a blunted post-prandial 

suppression (Frühbeck et al., 2014). Consequently, NEFA supply to the liver is increased 

(Byrne, 2013). 
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Whole body rates of lipolysis are greater in obese compared with lean individuals (Fabbrini et 

al., 2008). Furthermore, when matched for body fat, obese individuals with NAFLD have up 

to 2-fold greater lipolytic rates in adipose tissue than obese individuals with normal IHTG 

(Sunny et al., 2011). The magnitude of suppression of lipolysis by insulin infusion is also 

negatively associated with IHTG (Korenblat et al., 2008). In the fasted state, the majority of 

lipid supply to the liver is from the breakdown of ScAT (Fabbrini, Sullivan and Klein, 2010) 

and, in an intricate study using multiple lipid tracers, Donnelly and colleagues (Donnelly et al., 

2005) suggested that in individuals with NAFLD approximately 60% of IHTG originates from 

circulating, non-dietary NEFA. There is an additional supply of lipids originating from VAT 

but, contrary to the now widely-disputed ‘portal vein hypothesis’ (which suggested that hepatic 

steatosis was primarily caused by increased visceral lipids draining into the portal vein), the 

contribution of NEFA from VAT to total circulating NEFA remains low (albeit increased in 

obese (~20%) vs. lean (~5%) individuals) (Nielsen et al., 2004). 

Circulating NEFA concentrations during an oral glucose tolerance test (OGTT) are 

independently associated with IHTG (Holt et al., 2006). This is primarily driven by a strong 

relationship between IHTG and post-prandial suppression of adipose tissue lipolysis. During 

both insulin infusion and an OGTT, the suppression of adipose tissue lipolysis is reduced in 

individuals with hepatic steatosis compared to either lean individuals or obese individuals with 

normal IHTG (Sanyal et al., 2001; Seppälä-Lindroos et al., 2002; Holt et al., 2006). Only one 

of these studies found a relationship between NAFLD and circulating NEFA in the fasted state 

(Holt et al., 2006), whilst several studies have shown no association (Sanyal et al., 2001; 

Seppälä-Lindroos et al., 2002; Tiikkainen et al., 2002). 

2.3.7.3 Dietary NEFA 

Ingested lipids may contribute to IHTG as TG-rich chylomicrons pass into the fenestrations of 

the liver, are hydrolysed by LPL, and subsequently taken up into hepatocytes (Brouwers et al., 

2016). Approximately 15% of IHTG in individuals with NAFLD is suggested to originate from 

dietary sources (Donnelly et al., 2005). Excessive energy intake and a high proportion of fat-

rich foods combine to substantially increase the dietary intake of lipids and, as a result, the 

supply of lipid-rich chylomicron remnants delivered to the liver in the postprandial state. In 

addition, dysfunctional adipose tissue results in a ‘spillover’ of NEFA into the circulation, 

further increasing supply to the liver (Jacome-Sosa and Parks, 2014).  
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Within an isocaloric diet, macronutrient composition may be important, with suggestions that 

diets high in fat (and low in carbohydrate) may result in greater IHTG than those with low-fat, 

high-carbohydrate (Westerbacka et al., 2005; Van Herpen et al., 2011). However, hypo- and 

hypercaloric diets result in an increase or decrease in IHTG, respectively, with dietary 

composition seeming to be of less importance (Sevastianova et al., 2012; Lecoultre et al., 2013; 

Green and Hodson, 2014; Jensen et al., 2018). Notably, however, the mechanisms by which 

diets high in fat or sugar promote hepatic steatosis may differ. 

2.3.7.4 Hepatic de novo lipogenesis 

De novo lipogenesis (DNL) is the conversion of glucose to palmitate, through various 

intermediates including acetyl-coA and malonyl-coA, for subsequent esterification to TG 

(Fabbrini, Sullivan and Klein, 2010). Hepatic DNL is regulated by several enzymes including 

fatty acid synthase (FAS) and diacylglycerol acyltransferase (DGAT) 1 and 2, as well as a 

range of transcription factors, such as sterol regulatory element binding protein 1c (SREBP-

1c), carbohydrate-responsive element binding protein (ChREBP), farnesoid X receptor (FXR) 

and various peroxisome proliferator-activated receptor (PPAR) isoforms (Musso, Gambino and 

Cassader, 2009). In healthy humans, the contribution of DNL to hepatocyte-synthesised TG is 

low, accounting for less than 5%; although this was measured in TG-rich VLDL, not IHTG 

directly (Diraison, Moulin and Beylot, 2003). Conversely, in patients with NAFLD, the 

percentage of lipids in IHTG originating from DNL is suggested to be approximately 26% 

(Donnelly et al., 2005).  

Hepatic DNL is increased in individuals with NAFLD (Lambert et al., 2014). Furthermore, it 

is independently stimulated by insulin (Ameer et al., 2014) and glucose (Yamashita et al., 2001) 

by activating SREBP1c and ChREBP, respectively (which are commonly increased in patients 

with NAFLD or T2DM). Obese individuals with hyperinsulinaemia have greater rates of 

hepatic DNL after five days of isocaloric high-fat diet (HFD) than insulin-sensitive lean and 

obese controls (Schwarz et al., 2003). Furthermore, a three week period of high-carbohydrate 

overfeeding in obese individuals results in an increase of IHTG which correlates directly with 

increases in hepatic DNL (Sevastianova et al., 2012). Notably, de novo synthesised NEFAs 

activate PPARα to further stimulate hepatic NEFA uptake (Chakravarthy et al., 2005) which, 

in combination with impaired mitochondrial uptake and utilisation (mediated by inhibition of 

carnitine palmitoyltransferase (CPT) 1 by malonyl-coA), will further promote accumulation of 

IHTG (McGarry and Foster, 1980). 
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It is important to mention here the impact of skeletal muscle insulin resistance, which is also 

highly correlated with IHTG (Korenblat et al., 2008). Mice lacking the skeletal muscle glucose 

transporter (GLUT)-4 develop severe hepatic steatosis and insulin resistance (Kotani et al., 

2004). Hyperinsulinaemia and hyperglycaemia, as a consequence of skeletal muscle insulin 

resistance, will further stimulate hepatic DNL as ingested carbohydrate is diverted away from 

skeletal muscle glycogen synthesis and towards the liver, where it is converted to palmitate and 

stored as IHTG (Petersen et al., 2007; Flannery et al., 2012). Fructose may be particularly 

important in this because the nature of its carbon phosphorylation means that it cannot be 

converted to glycogen and thus proceeds to DNL (Leclerq, 2013).  

2.3.7.5 Hepatic lipid oxidation 

Lipids are the preferred hepatic fuel in the fasted state (McGarry and Foster, 1980). Hepatic 

lipid oxidation occurs primarily in the mitochondria but also, to a lesser extent, in peroxisomes 

and microsomes (Fabbrini, Sullivan and Klein, 2010). The carnitine-dependent enzyme shuttle 

(involving CPT1 and CPT2 transporters along with carnitine acyltransferase) regulates 

transport of NEFAs into the mitochondria, where they are progressively shortened to produce 

acetyl-coA (Fabbrini, Sullivan and Klein, 2010). Acetyl-coA formed in this manner can then 

either provide a precursor for ketogenesis (to be exported and used as fuel in other tissues), or 

enter the tricarboxylic acid (TCA) cycle for β-oxidation (McGarry and Foster, 1980).  

Somewhat paradoxically, the contribution of lipid oxidation to hepatic fuel metabolism is 

increased in hepatic steatosis and hepatic insulin resistance (Sanyal et al., 2001; Iozzo et al., 

2010) and, in rodents, may be as high as 100% (Alves et al., 2011). This may be explained as 

an adaptive response to increase the hepatic rate of lipid utilisation in attempt to limit excessive 

accumulation of IHTG. However, evidence in humans is limited. Gene expression of key 

enzymes in oxidative processes are increased in individuals with NAFLD compared to those 

with normal IHTG content, but hepatic expression of CPT1 is reduced along with mRNA of 

key components in mitochondria biogenesis (Greco et al., 2008; Koliaki et al., 2015). 

Mitochondrial respiration is, however, increased in obese individuals with NAFLD and 

correlates with IHTG (Sunny et al., 2011), despite similar total mitochondrial content (Koliaki 

et al., 2015). Furthermore, plasma ketone concentration, which can be used as an indirect 

measure to infer hepatic lipid oxidation, is increased in humans with NAFLD in some, but not 

all, studies (Sanyal et al., 2001; Chalasani et al., 2003).  
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2.3.7.6 Synthesis and export of lipid-rich very low-density lipoprotein (VLDL) 

NEFAs that are not oxidised are esterified into TG and either stored as IHTG or exported in 

the form of TG-rich VLDL (Fabbrini, Sullivan and Klein, 2010). VLDL-TG secretion has 

repeatedly been shown to be greater in individuals with NAFLD compared to those with normal 

IHTG in both the fasted (Fabbrini et al., 2008, 2009) and post-prandial states (Cassader et al., 

2001; Annuzzi et al., 2004). However, there appears to be a ceiling effect whereby VLDL-TG 

secretion increases linearly throughout normal ranges of IHTG but may not increase further 

beyond IHTG of approximately 6%; suggesting that it may be an early adaptive response in 

attempt to limit IHTG accumulation (Fabbrini et al., 2008). 

2.3.8 Pathogenesis of hepatic insulin resistance 

As mentioned previously, insulin resistance is heavily implicated in the development of hepatic 

steatosis and, in most individuals, strong associations exist between IHTG and insulin 

sensitivity in a range of tissues, including the liver (Korenblat et al., 2008; Bril, Barb, et al., 

2017). Insulin resistance in skeletal muscle, hepatic and adipose tissues promotes steatosis, 

whilst steatosis, in turn, perpetuates insulin resistance. As such, the two are intricately linked 

within a myriad of conditions, which, in most cases, occur in the underlying context of obesity 

and physical inactivity.  

The molecular mechanisms underlying insulin resistance are vast and complex and may differ 

subtly between tissues and amongst different insulin-dependent processes (Fabbrini, Sullivan 

and Klein, 2010). There is also increasing evidence that the steatotic liver in NAFLD may 

display selective insulin resistance whereby the regulation of glucose production is impaired, 

whilst that of TG synthesis is maintained (Cook et al., 2015; Jelenik et al., 2017). However, 

this literature will not be discussed in depth. Rather, the following paragraphs will provide an 

overview of the established concepts surrounding ‘normal’ and impaired insulin signalling in 

hepatic and skeletal muscle tissues, focussing on the regulation of circulating glucose. For 

simplicity, these processes will be presented in a linear manner, highlighting key signalling 

proteins. The reality is that many more steps of signalling are involved and their interaction is 

highly complex. For more information, interested readers are directed to excellent published 

reviews (Samuel, Petersen and Shulman, 2010; Samuel and Shulman, 2012; Perry et al., 2014). 

Circulating insulin binds to the insulin receptor at the cell membrane of hepatocytes and 

myocytes, causing tyrosine phosphorylation of insulin receptor substrates 1 and 2 (IRS1, IRS2) 
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(Samuel, Petersen and Shulman, 2010; Perry et al., 2014; Shulman, 2014). In turn, IRS1/2 bind 

to and activate phosphatidylinositol 3-kinase (PI3K). In skeletal muscle, PI3K stimulates the 

translocation of GLUT4 to the cell membrane for the uptake of glucose from the circulation 

and subsequent conversion to intramuscular glycogen (Samuel, Petersen and Shulman, 2010; 

Perry et al., 2014; Shulman, 2014). Insulin-mediated glucose uptake in the liver is much less 

than that of skeletal muscle, with evidence suggesting that signals from oral ingestion are 

required beyond the elevation of circulating glucose and insulin per se (Moore et al., 2012). 

However, activation of hepatic PI3K by IRS1/2 results in the stimulation of Akt2 (also known 

as protein kinase B), which promotes glycogen synthesis and inhibits DNL, through the 

inhibition of glycogen synthase kinase 3 (GSK3) and forkhead box protein O1 (FoxO1), 

respectively (Samuel, Petersen and Shulman, 2010; Perry et al., 2014; Shulman, 2014).  

One established mechanism underlying insulin resistance is the activation of protein kinase C 

isoforms (PKCθ and PKCε in skeletal muscle and hepatic tissues, respectively), which 

translocate to the cell membrane and disrupt insulin signalling (Jornayvaz and Shulman, 2012; 

Birkenfeld and Shulman, 2014). Here, they cause phosphorylation of serine residues on IRS1 

and IRS2 to impair downstream insulin signalling processes, including those outlined above 

(Samuel, Petersen and Shulman, 2010; Samuel and Shulman, 2012; Perry et al., 2014). Insulin 

action may also be impaired through the activation of inflammatory pathways, mediated by 

nuclear factor-κB (NF-κB) (Fabbrini, Sullivan and Klein, 2010). Several factors associated 

with NAFLD mediate hepatic insulin resistance. The following paragraphs outline the impact 

of lipotoxicity, hepatic and peripheral inflammation and endoplasmic reticulum stress (Samuel 

and Shulman, 2012).  

2.3.8.1 Lipotoxicity 

In hepatocytes, NEFAs are progressively combined with glycerol-3-phosphate (a product of 

glycolysis) to form mono- (MAG), di- (DAG) and finally tri-acylglycerol (a term which is 

synonymous with triglyceride) (Samuel and Shulman, 2012). Whilst effective conversion and 

subsequent storage of NEFAs to TG may be considered a beneficial adaptation to energy 

surplus, it is an increase in many of these intermediates, particularly DAG, that is thought to 

have deleterious effects (Tilg and Moschen, 2010; Samuel and Shulman, 2012). In rodents, 

inhibition of hepatic DGAT2 (the enzyme which converts DAG to TG) results in a reduction 

of IHTG, a result that could be considered a beneficial shift in NAFLD risk/severity. However, 

this is accompanied by increased fatty acid oxidation, oxidative stress and liver injury 
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(Yamaguchi et al., 2007). Notably, the knockdown of mitochondrial glycerol-3-phosphate 

acyltransferase (mtGPAT) 1, which catalyses the formation of lysophosphatidic acid (LPA) 

from fatty acyl-coA, results in a reduction of TG, and DAG, but does not prevent the 

development of hepatic insulin resistance, suggesting that DAG may not be the only lipid 

intermediate mediating this effect (Neschen et al., 2005). Mice fed a 3-day HFD develop 

steatosis and hepatic insulin resistance, even before the development of obesity, peripheral 

insulin resistance or systemic inflammation (Samuel et al., 2004, 2007). In these circumstances, 

both insulin-dependent activation of glycogen synthesis and suppression of EGP are impaired, 

and this can be attributed to an increased hepatic DAG, activation of PKCε and subsequent 

reduction in tyrosine phosphorylation of IRS1/2 (Samuel et al., 2007). Importantly, knockdown 

of PKCε reduces HFD-induced hepatic insulin resistance despite similar hepatic DAG and TG 

content (Samuel et al., 2007; Raddatz et al., 2011). In humans with NAFLD, increased flux 

through TG-synthesis pathways results in increased production of lipid intermediates including 

LPA and DAG (Fabbrini, Sullivan and Klein, 2010; Samuel and Shulman, 2012). Hepatic 

PKCε and DAG are strong predictors of hepatic insulin resistance in human patients with 

NAFLD (Kumashiro et al., 2011).  

2.3.8.2 Local and peripheral inflammation 

In rodents, selective activation of hepatic NF-κB induces hepatic inflammation and hepatic 

insulin resistance (Cai et al., 2005). As adipose tissue expands, it can become infiltrated with 

macrophages, which consequently cause inflammation, insulin resistance and dysfunction 

(Samuel and Shulman, 2012). Recruited macrophages release cytokines and chemokines 

(including interleukin (IL) -6, tumor necrosis factor (TNF) α and monocyte chemoattractant 

protein (MCP) 1 into the circulation, which impair hepatic insulin signalling through the 

activation of hepatic NF-κB (Shoelson, Herrero and Naaz, 2007). Adipose tissue macrophage 

content and cytokine/chemokine production are increased in obese individuals compared to 

lean controls (Weisberg et al., 2003) and in obese individuals with NAFLD compared to 

matched individuals with normal IHTG content (Kolak et al., 2007). Lipid intermediates may 

also activate NF-κB to further contribute to hepatic insulin resistance beyond the direct effects 

of lipotoxicity mentioned above (Nagle et al., 2007; Schenk, Saberi and Olefsky, 2008). 

2.3.8.3 Endoplasmic reticulum stress 

The endoplasmic reticulum (ER) is a cellular organelle that coordinates the post-translational 

synthesis, folding and trafficking of proteins (Fabbrini, Sullivan and Klein, 2010). Un- or mis-
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folded proteins are identified by the ER for degradation by the proteasome (Samuel and 

Shulman, 2012). Under conditions of cellular stress, such as hypoxia or changes in substrate 

balance, unfolded proteins accumulate, resulting in impaired cellular function. In these 

circumstances, an unfolded protein response (UPR) is initiated in an attempt to restore normal 

function (Fabbrini, Sullivan and Klein, 2010). The UPR involves several cellular processes, 

including the activation of c-Jun N-terminal kinase (cJNK) which, in turn, activates NF-κB to 

induce insulin resistance (Özcan et al., 2004). Conversely, experimental reduction of ER stress 

improves insulin action (Özcan et al., 2006). Lipotoxicity is also a stimulus for the UPR in 

hepatocytes (Hotamisligil, 2010). Experimental research in humans is limited but individuals 

with NAFLD have been shown to have increased mRNA and/or activation of several proteins 

involved in the UPR (Puri et al., 2008). 

2.3.9 Treatment of NAFLD 

2.3.9.1 Pharmacological therapies 

No drug therapies are currently approved specifically for the treatment of NAFLD (Marchesini 

et al., 2016; Rinella and Sanyal, 2016). As such, the use of pharmacological treatment in 

patients with NAFLD is restricted to off-label prescription (Marchesini et al., 2016; Rinella 

and Sanyal, 2016), but due to the low prevalence of progressive liver complications in 

individuals with steatosis alone, this is usually reserved for individuals with progressive NASH 

or high risk of fibrosis (Singh et al., 2015). Individuals with NAFLD may, of course, take 

prescription medications for the treatment of other associated co-morbidities such as T2DM, 

dyslipidaemia and hypertension. A handful of pharmacological agents have been tested for 

efficacy in the direct management of NASH and those that have reached phase II clinical trials 

will be outlined briefly in the following paragraphs, along with those more novel that show 

promise. Interested readers are directed to published reviews for additional information 

(Mazzella et al., 2014; Ratziu, Goodman and Sanyal, 2015). 

Thiazolidinediones (TZDs) are PPARγ agonists with insulin-sensitizing effects. The PIVENS 

trial investigated the effects of 2-year treatment with Pioglitazone in non-diabetic patients with 

NASH, comparing it with placebo or Vitamin E supplementation (Sanyal et al., 2010). 

Pioglitazone successfully reduced all histological features of NASH except fibrosis and these 

benefits have been confirmed in a published meta-analysis (Mahady et al., 2011). However, 

concerns exist regarding the side-effects of TZDs, which include weight gain, increased risk of 

bone fractures (particularly in women) and, rarely, congestive heart failure (Marchesini et al., 
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2016). Other glucose-lowering agents show promise including incretin mimetics such as the 

GLP1-recpetor agonist, liraglutide, but large randomised controlled trials (RCTs) are required 

(Armstrong et al., 2016). Metformin is an established first line treatment in T2DM, improving 

hepatic insulin sensitivity to elicit benefits on glycaemic control (Cusi, Consoli and DeFronzo, 

1996). However, it appears to have no effect on histological features of NASH, including 

steatosis (Haukeland et al., 2009). 

One treatment arm of the PIVENS trial prescribed 800 IU/day of vitamin E and observed a 

reduction in steatosis, inflammation and lobular ballooning in 36% of patients (21% in the 

placebo group) (Sanyal et al., 2010). Steatosis was reduced in 54% of patients compared to 31% 

of patients prescribed placebo. The TONIC trial demonstrated that vitamin E also reduces 

steatosis in children (Lavine et al., 2011). However, its use has been limited following the 

results of a meta-analysis (19 clinical trials and almost 136,000 patients) suggesting that 

vitamin E at a dose of 800 IU/day is associated with increased risk of all-cause mortality (Miller 

et al., 2005).  

Obeticholic acid, a FXR agonist has also been investigated. Activation of FXR improves 

clamp-derived insulin sensitivity and decreases DNL (Mudaliar et al., 2013). In the FLINT 

trial, obeticholic acid improved steatosis in individuals with NASH but LDL was also increased, 

raising concerns of an increased cardiovascular risk (Neuschwander-Tetri et al., 2015). Issues 

of tolerability have also been reported (Marchesini et al., 2016; Rinella and Sanyal, 2016). 

Notably, a rodent study has demonstrated reduced atherosclerotic risk following treatment with 

obeticholic acid, despite elevations in circulating LDL (Miyazaki-Anzai et al., 2014). 

Supplementation with polyunsaturated fatty acids (PUFAs) has been shown to reduce IHTG in 

early clinical trials (Argo et al., 2015). However, despite its beneficial effects on insulin 

sensitivity and systemic inflammation giving clear rationale for expected benefits in NAFLD 

(Pettinelli et al., 2009; Patterson et al., 2012), phase II trials have failed to demonstrate 

histological improvements (Sanyal et al., 2014; Dasarathy et al., 2015). 

There is also early evidence for the effective use of lipid lowering agents such as pentoxifylline 

(Van Wagner et al., 2011; Zein et al., 2011) and orlistat (Zelber-Sagi et al., 2006; Harrison et 

al., 2009). However, whilst cheap and well tolerated, the effects of pentoxifylline may be 

reserved for only a subset of individuals (Rinella and Sanyal, 2016). Statins are safe for use in 

patients with NAFLD but their direct effects on histological outcomes have not been 

investigated properly (Dongiovanni, Petta, Mannisto, et al., 2015). 
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Part of the difficulty in gaining approval for pharmacological treatments in NAFLD is that 

regulatory bodies continue to demand the use of liver biopsy for the assessment of histological 

changes. This results in a number of practical difficulties, particularly regarding repeated 

testing of control groups in RCTs. It is hoped that with the ongoing development of non-

invasive methods to assess hepatic inflammation, fibrosis and cirrhosis, these alternative 

methods may gain approval and in turn increase the number of phase II and III trials. Ultimately, 

however, the lack of liver-related complications associated with steatosis alone means that the 

recommended use of pharmacological treatment in individuals with non-advanced NAFLD 

(other than treatment of co-morbidities) is unlikely in the near future. 

2.3.9.2 Bariatric and metabolic surgery 

Bariatric, or metabolic, surgery remains an option for weight loss in individuals where other 

weight management approaches have failed (Marchesini et al., 2016). A study in which 150 

overweight/obese patients with T2DM were randomised to either continued medical therapy, 

gastric bypass or sleeve gastrectomy, has recently published 5-yr follow-up data (Schauer et 

al., 2017). Both surgical interventions elicited reductions in body weight, HbA1c and lipid 

profile. Patients that underwent gastric bypass lost significantly more weight, but no 

differences between surgeries were reported for any other outcome (Schauer et al., 2017). It 

has also been reported that surgical intervention reverses steatosis, NASH and possibly fibrosis 

one year after surgery in individuals with biopsy-proven NASH (Lassailly et al., 2015). The 

median biopsy-derived steatosis (percentage of hepatocytes with evidence of steatosis) reduced 

from 60% (IQR 40 to 60%) at baseline to 10% (2.5 to 21.3%) at 1-year. Surgery is also reported 

to reduce liver enzymes and other outcomes of relevance to patients with NAFLD, including 

systemic inflammation and hypertension (Aguilar-Olivos et al., 2016). A recent study in 

rodents has demonstrated that sleeve gastrectomy reduces IHTG and improves hepatic insulin 

sensitivity independent of weight loss (Gazala et al., 2018). However, there are risks and 

expense associated with these procedures and they are not routinely recommended for 

individuals with NAFLD, particularly on the grounds of isolated steatosis alone. Studies 

investigating liver-specific mortality, liver transplantation and quality of life are required 

before this management approach is likely to change (Aguilar-Olivos et al., 2016). 

2.3.9.3 Lifestyle intervention 

Given the evidence outlined above, lifestyle intervention, consisting of changes to diet and 

physical activity, remains the cornerstone of treatment in NAFLD and is mandatory for all 
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patients, regardless of disease severity (Marchesini et al., 2016; Rinella and Sanyal, 2016). The 

underlying aims of this intervention are to reduce body weight and increase cardiorespiratory 

fitness (Rinella and Sanyal, 2016), as relatively small amounts of weight loss reduce IHTG and 

improve hepatic insulin sensitivity (Petersen et al., 2005). Furthermore, physical fitness is 

inversely related with NAFLD risk (Zelber-Sagi, Ratziu and Oren, 2011). One notable 

exception is the unique group of individuals with ‘lean NAFLD’ in which weight loss is not a 

valid treatment goal. However, even in these patients, a healthy dietary composition and active 

lifestyle should be encouraged (Marchesini, Petta and Dalle Grave, 2016). 

In a sub-analysis of patients enrolled in the Look AHEAD trial (a 12-month intensive lifestyle 

intervention aimed at reducing T2DM risk), participants completing the intervention lost 

significantly more weight, had greater reductions in IHTG and had lower risk of NAFLD 

progression compared to those who remained in standard care (Lazo et al., 2010). Whilst at 

least 5% weight loss is associated with improvement in hepatic steatosis, greater reductions 

may be required to elicit other histological improvements (Promrat et al., 2010; Vilar-Gomez 

et al., 2015). In a 12-month uncontrolled community healthcare intervention, where 261 

patients underwent paired liver biopsy, a dose-response relationship was apparent between the 

magnitude of weight loss and histological improvement. NASH resolution was observed in 

26%, 64% and 90% of patients when weight loss of 5-7.5%, 7.5-10% and >10% was achieved 

(Vilar-Gomez et al., 2015). Notably, only 30% of individuals randomised to the intervention 

(target energy restriction of 750 kcal per day and increased physical activity) achieved at least 

5% weight loss. In a separate trial in individuals with NASH, weight loss >7% was associated 

with histological improvement regardless of allocation to lifestyle intervention or standard care 

groups (Promrat et al., 2010). 

Using hypocaloric diet alone, a 5% reduction in body weight over a few weeks is associated 

with a 25% improvement in IHTG, up to the resolution of ‘healthy’ levels (Patel et al., 2015). 

In a large randomised trial, the composition (low-carbohydrate vs. low-fat) of a 6-month 

hypocaloric diet did not appear to have a substantial contribution to reductions in IHTG (Haufe 

et al., 2011). However, over a shorter duration (two weeks) carbohydrate restriction may be 

more effective than general caloric restriction in reducing IHTG (Browning et al., 2011), 

although evidence is limited. The Mediterranean diet, which is high in mono-unsaturated fatty 

acids (MUFAs) and fibre, and low in saturated fatty acids (SFAs), has been shown to reduce 

IHTG over six weeks in individuals with NAFLD, independent of weight loss (Ryan et al., 

2013). Furthermore, increases in IHTG as a result of overfeeding are attenuated in groups 
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consuming a diet low in SFAs compared to a high-SFA diet (Rosqvist et al., 2014). The 

consumption of dietary fructose in the form of high-fructose corn syrup, the principal 

sweetening component of sugar-sweetened beverages, is associated with hepatic steatosis 

(Zelber-Sagi et al., 2007; Maersk et al., 2012), and the addition of fructose to overfeeding 

protocols exacerbates increases in IHTG (Sobrecases et al., 2010). However, the consumption 

of fruit (which is also high in fructose) is considered safe and healthy for individuals with or at 

risk of NAFLD (Marchesini, Petta and Dalle Grave, 2016). Notably, however, a randomised 

trial in which participants consumed a diet high in either fructose or glucose under both 

isocaloric and hypercaloric circumstances (each for two weeks with a six-week washout 

between), reported significantly increased homeostatic model assessment of insulin resistance 

(HOMA-IR) by the high-fructose diet in the isocaloric period only (Johnston et al., 2013). 

There were no other differences between the diets in either isocaloric or hypercaloric periods 

in relation to measures of adiposity (including IHTG) or clamp-derived indices insulin 

sensitivity. 

Joint-guidelines from the European Associations for the Study of Liver, Diabetes and Obesity 

(EASL, EASD, and EASO) state the following components should be considered when 

designing a lifestyle intervention in the treatment of NAFLD (Marchesini et al., 2016): 

• Promotion of energy restriction with a target energy deficit of 500-1000 kcal/day. 

• Minimum target weight loss of 7-10% initial body weight. 

• Changes in dietary composition, if desired, according to the Mediterranean diet, whilst 

consumption of sugar-sweetened beverages should be avoided. 

• Strict adherence to recommended weekly alcohol limits (< 14 and 21 units for women 

and men, respectively). 

These are very similar to the joint-guidelines of the American College of Cardiology, American 

Heart Association and the Obesity Society for the management of overweight and obesity 

(Jensen et al., 2014). Guidelines also promote the incorporation of physical activity or exercise, 

and the reduction of sedentary time, as follows: 

• Completion of 150-200 min·wk-1 of moderate-intensity exercise, divided across three-

to-five sessions. 

• Gradual increase in physical activity with the aim of inducing an energy deficit of 400 

kcal·day-1. 
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• Addition of resistance exercise to elicit musculoskeletal benefits (this may replace 

aerobic exercise in individuals for whom it may not be feasible, appropriate or well 

adhered to). 

• Reduction in sedentary time and increase in daily steps (towards a target of 10,000 to 

12,000 steps·day-1). 

• Avoidance of sustained periods of inactivity to lower lethargy and increase compliance. 

All available guidelines for lifestyle interventions promote the use of individually tailored 

programmes and the setting of goals according to patient preferences (Jensen et al., 2014; 

Marchesini et al., 2016; Marchesini, Petta and Dalle Grave, 2016; Rinella and Sanyal, 2016). 

Cognitive behavioural therapies should be used to increase compliance and remove perceived 

barriers to weight loss and maintenance. Long-term evidence concerning the natural history of 

NAFLD following lifestyle intervention is lacking and no guide on the length of monitored 

weight maintenance exists (Marchesini et al., 2016; Marchesini, Petta and Dalle Grave, 2016; 

Rinella and Sanyal, 2016). However, providing structured monitoring and support to 

individuals for as long as possible will likely improve adherence and this may translate to 

greater benefits. 

2.3.9.4 Structured exercise training 

The effects of exercise alone in the treatment of NAFLD have also been investigated. Chapter 

7 of this thesis presents a systematic review and meta-analysis of the effects of exercise training 

on IHTG and hepatic insulin sensitivity in individuals with or at risk of NAFLD. As such, the 

following section of this literature review will remain brief.  

The potential for exercise to induce large energy deficits is much smaller than that of caloric 

restriction (Marchesini, Petta and Dalle Grave, 2016). However, meaningful benefits of 

exercise on IHTG have been reported (Keating et al., 2012; Katsagoni et al., 2017). This is of 

clinical importance, particularly for individuals who may struggle to adhere to sustained 

periods of energy restriction (Montesi et al., 2014). Exercise also elicits an array of wider 

cardiometabolic benefits, including increased fitness and insulin sensitivity, and reduced blood 

pressure (Kodama et al., 2009; Garber et al., 2011; James et al., 2014; Colberg et al., 2016). 

Both aerobic and resistance exercise have been shown to reduce IHTG and improve whole-

body insulin sensitivity (Hallsworth et al., 2011; Zelber-Sagi et al., 2014; Cuthbertson et al., 

2016; Zhang et al., 2016). Results from the STRRIDE-AT/RT trial suggests that the benefits 

of aerobic exercise may be greater than those of resistance training (Slentz et al., 2011), but 
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any form of physical activity that replaces time spent sedentary is likely to be of benefit to most 

individuals with NAFLD (Marchesini, Petta and Dalle Grave, 2016). Importantly, exercise may 

elicit beneficial reductions in IHTG even in the absence of weight loss (Johnson et al., 2009; 

Sullivan et al., 2012), highlighting its important role in the management of NAFLD.  

Given the mechanisms outlined previously that underlie the development of hepatic insulin 

resistance, it is feasible that exercise-induced reductions in IHTG and improvements in 

peripheral insulin sensitivity may correspond with improvements in hepatic insulin action. 

However, the effects of exercise training on hepatic insulin sensitivity in NAFLD are unclear. 

Stable or radioactive isotope-labelled glucose tracers are required to directly assess hepatic 

insulin sensitivity through the measurement of EGP in the basal and/or insulin stimulated states 

(Kim et al., 2016). Basal rates of EGP appear to be unaffected by moderate-intensity aerobic 

or combined aerobic-plus-resistance exercise training in adults (Shojaee-Moradie et al., 2007; 

Meex et al., 2010; Hickman et al., 2013; Cuthbertson et al., 2016). However, when EGP is 

combined with insulin to form an index of hepatic insulin sensitivity one study reported a 

tendency (P = 0.06) for an improvement (Hickman et al., 2013). Two studies by the same 

research group have also assessed the percentage suppression of EGP by low-dose insulin 

infusion before and after aerobic exercise training (Shojaee-Moradie et al., 2007; Cuthbertson 

et al., 2016), reporting contrasting findings. Hepatic insulin sensitivity was improved after six 

weeks of training despite no change in body weight or IHTG (Shojaee-Moradie et al., 2007). 

However, 12 weeks of training, which elicited weight loss and significant reduction in IHTG, 

was not associated with improved percentage suppression of EGP (Cuthbertson et al., 2016). 

None of these studies were formally powered to assess changes in hepatic insulin sensitivity 

and alternative forms of exercise, or different exercise intensities, have not been explored. 

2.3.10 Mechanisms by which exercise may reduce IHTG  

Prolonged negative energy balance reduces adipose tissue mass and body weight. After a 

sustained period of energy deficit, the greatest absolute changes in adipose tissue stores occur 

within subcutaneous sites, but substantial relative changes are also elicited in visceral and 

ectopic compartments including the liver (Lazo et al., 2010; Promrat et al., 2010; Vilar-Gomez 

et al., 2015). Alongside energy restriction, regular exercise training can facilitate negative 

energy balance, weight loss and reductions in IHTG (Brouwers et al., 2016). However, exercise 

training may also modulate the uptake and export of hepatic lipids beyond weight loss and 

changes in subcutaneous adipose tissue stores. These effects may underlie the benefits of 
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exercise that are reported independent of weight change (Johnson et al., 2009; Sullivan et al., 

2012). Studies investigating these mechanisms in humans are limited, but the best available 

evidence is presented below. 

2.3.10.1 Circulating NEFA in the fasted and post-prandial state 

Six weeks of aerobic exercise training and six months of combined diet-plus-exercise training 

have each been shown to reduce basal rates of adipose tissue lipolysis in obese, post-

menopausal women (You et al., 2004; Shojaee-Moradie et al., 2007). These benefits do not, 

however, always correspond to changes in IHTG (Shojaee-Moradie et al., 2007). Furthermore, 

several studies report that fasted NEFA, which can be attributed to basal adipose tissue lipolysis, 

is unchanged by exercise training in patients with NAFLD, even when IHTG is reduced 

(Hallsworth et al., 2011; Sullivan et al., 2012; Cuthbertson et al., 2016; Zhang et al., 2016). As 

such, changes in post-prandial lipid metabolism may be more influential on the reduction of 

IHTG elicited by exercise training.  

Shojaee-Moradie and colleagues reported that the suppression of adipose tissue lipolysis by 

insulin, measured using palmitate and glycerol tracers, was improved after six weeks of aerobic 

exercise training (Shojaee-Moradie et al., 2007). Similar findings have been reported after 12 

weeks of combined aerobic and resistance exercise in obese individuals with or without 

dysregulated glucose metabolism (Meex et al., 2010). It is notable, however, that Meex and 

colleagues did not measure IHTG and Shojaee-Moradie et al reported that it was unaffected by 

exercise. Other studies have found that 12 weeks of aerobic exercise training in individuals 

with dysregulated glucose metabolism has no effect on the suppression of circulating NEFA 

after steady-state insulin infusion (Solomon et al., 2009; Malin, Haus, et al., 2013). In a study 

of obese, sedentary women, nine months of high- but not moderate-intensity aerobic exercise 

training improved the percentage suppression of NEFA by insulin, but these results could be 

attributed to a much lower suppression at baseline in the high-intensity group, compared to the 

moderate-intensity and control groups (DiPietro et al., 2006). Similarly, 12 weeks of strength 

training in obese men has been reported to increase the percentage suppression of NEFA in 

response to insulin infusion. However, fasted circulating concentrations of NEFA were 

increased from pre- to post-training and the absolute concentrations in the insulin-stimulated 

state were unaffected (Polak et al., 2005).  

Collectively, the effects of exercise training on insulin-stimulated suppression of adipose tissue 

lipolysis in NAFLD are unclear. Whilst improved insulin-stimulated suppression of lipolysis 
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may be of theoretical benefit, these effects alone do not explain reductions in IHTG with 

exercise training. It should also be noted that reduced circulating concentrations of NEFA do 

not necessarily reflect a reduction in the rates of adipose tissue lipolysis and may instead be 

due to increased rates of clearance (Brouwers et al., 2016). In cross-sectional studies using 

labelled lipid tracers, it has been suggested that increased aerobic fitness is associated with a 

greater uptake of NEFA into skeletal muscle. This finding complements the paradoxical 

phenomenon of high, yet healthy, intramuscular triglyceride in trained individuals (Iozzo et al., 

2004; Hannukainen et al., 2007). 

2.3.10.2 Dietary lipids and VLDL metabolism 

The effects of exercise training on post-prandial hepatic lipid storage has not been explored 

directly so evidence is limited to inferences based on circulating fasted or post-prandial 

concentrations of VLDL or TG (Brouwers et al., 2016). Six months of supervised aerobic 

exercise training in individuals with NAFLD elicited a reduction in fasted VLDL secretion, 

with no difference in the density or clearance of secreted particles (Alam et al., 2004). Similar 

results have been demonstrated after an eight week programme of high-intensity interval 

training in obese, sedentary men (Tsekouras et al., 2008). In contrast, 16 weeks of moderate-

intensity aerobic training increased the clearance of large TG-rich VLDL particles, with no 

effect on rates of production (Shojaee-Moradie et al., 2016), whilst another study reported that 

16 weeks of aerobic exercise had no effect on VLDL metabolism (Sullivan et al., 2012). 

Circulating TG concentrations in the fasted state are not reduced by exercise training in patients 

with NAFLD (Sullivan et al., 2012; Hickman et al., 2013; Cuthbertson et al., 2016; Zhang et 

al., 2016). Collectively, the effects of exercise on fasted VLDL metabolism in individuals with 

NAFLD are ambiguous at present. It is noteworthy, however, that an increased secretion of 

TG-rich VLDL would be required to explain the reductions in IHTG seen with exercise training 

and no study has reported this to date. 

The circulating TG concentration in response to a meal is acutely attenuated by a single bout 

of moderate-intensity exercise for up to 24 hours and this may be mediated by increased 

clearance by skeletal muscle (Gill, 2004; Maraki and Sidossis, 2013). Cross-sectional studies 

have also reported that post-prandial triglyceridaemia is reduced in individuals that are 

physically active compared to sedentary individuals (Cohen, Noakes and Benade, 1989; Ziogas, 

Thomas and Harris, 1997). However, the benefits on post-prandial lipid metabolism with 

exercise may be restricted to the acute effects of the final exercise bout, rather than a true 
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training effect per se (Gill, 2004; Maraki and Sidossis, 2013). When assessments are made 

more than 24 hours after the final exercise bout of an exercise training programme, post-

prandial TG concentrations are unchanged (Aldred, Hardman and Taylor, 1995; Herd et al., 

1998; Altena et al., 2006). It could be speculated, however, that regular lowering of post-

prandial TG after each session of an exercise training intervention may play a role in the 

reduction of IHTG, but further research is required to explore this hypothesis in detail. 

2.3.10.3 De novo lipogenesis 

No studies have directly explored the effects of exercise training on hepatic DNL in humans. 

However, in a series of studies in OLETF rats, key enzymes involved in several steps of DNL 

are reduced by exercise training, when employed either as a strategy to prevent/attenuate the 

accumulation of IHTG, or as a therapeutic intervention once steatosis has developed (Rector et 

al., 2008, 2011, Linden et al., 2014, 2015). These results are accompanied by reductions in 

circulating insulin and glucose, which are potent stimulators of DNL (Yamashita et al., 2001; 

Ameer et al., 2014). Although fasted concentrations of circulating glucose and insulin are 

unaffected by exercise training in individuals with NAFLD (Hallsworth et al., 2011; Keating 

et al., 2015; Cuthbertson et al., 2016; Zhang et al., 2016), peripheral insulin sensitivity is 

improved (Hickman et al., 2013; Cuthbertson et al., 2016). This will plausibly lead to reduced 

post-prandial concentrations of insulin and glucose, which may in turn reduce DNL. These 

effects could at least partially mediate reductions in IHTG by exercise training. Notably, acute 

exercise in lean, insulin-resistant individuals has been shown to improve the skeletal muscle 

response to insulin, reduce hepatic triglyceride synthesis and reduce hepatic DNL (Rabøl et al., 

2011). However, this hypothesis remains speculative and the effects of exercise training on 

markers of DNL in humans with NAFLD require detailed investigation. 

2.3.10.4 Hepatic mitochondrial lipid oxidation 

In the same series of studies in OLETF rats, the research group of Rector and colleagues 

reported an increase in complete oxidation of palmitate after exercise training, which was 

accompanied by an increase in key markers of hepatic mitochondrial lipid oxidation (Rector et 

al., 2008, 2011, Linden et al., 2014, 2015). These findings suggest that improved capacity for 

oxidative phosphorylation of NEFAs in the liver may play a part in post-exercise reductions in 

IHTG, but data in humans are lacking.  
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2.3.11 Relevance of exercise intensity in the management of NAFLD 

Evidence suggests that exercise intensity may be an important parameter in determining the 

benefits of exercise training for individuals with NAFLD. In retrospective cross-sectional 

analyses, 813 individuals with biopsy-defined NAFLD were categorised according to whether 

they reported meeting United States guidelines for moderate- (150 min·wk-1) or vigorous- (75 

min·wk-1) intensity physical activity (Kistler et al., 2011). In these analyses, it was only 

individuals that met vigorous-intensity guidelines that had a significantly lower odds ratio of 

having advanced NAFLD (NASH and advanced fibrosis) (Kistler et al., 2011). Notably, these 

individuals all had diagnosed NAFLD and the effects of exercise intensity on IHTG per se 

were not explored. In a recent study in rodents, 40 mice were randomised into one of four 

different 16-week interventions: 1) control (chow diet), 2) high-fat overfeeding, 3) high-fat 

overfeeding with moderate-intensity exercise training and, 4) high-fat overfeeding with high-

intensity interval exercise training (Cho et al., 2015). Exercise was performed during the final 

8 weeks only. High-fat overfeeding resulted in the development of steatosis in all three groups 

but notably, the magnitude of IHTG accumulation was attenuated by exercise training in a step-

wise manner according to exercise intensity (Cho et al., 2015).  

It may be important that completing exercise at a high-intensity does not come at the expense 

of total intervention volume. Individuals completing more than 250 min·wk-1 of moderate-to-

vigorous physical activity during a 12 week lifestyle intervention demonstrated greater 

reductions in hepatic steatosis than those completing less than 250 min·wk-1 (Oh et al., 2015). 

Whilst not unexpected, this underscores the importance of exercise volume, as well as intensity, 

within the management of NAFLD.  

Collectively, these studies suggest that completing exercise of a higher intensity may elicit 

greater benefits on IHTG in individuals with NAFLD. Benefits may be greater still if a high 

training volume is maintained but something is better than nothing. A form of exercise training 

that may help support individuals to complete exercise of a greater intensity is HIIT.  

2.4  High-intensity interval training (HIIT) 

HIIT is a collective term describing several exercise protocols characterised by periods of high-

intensity exercise interspersed with periods of rest or active recovery (Gibala, Gillen and 

Percival, 2014; MacInnis and Gibala, 2016). A variety of HIIT protocols exist which utilise a 

range of exercise intensities and durations. The most prominent of these protocols are ‘sprint 
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interval training’ (SIT), comprising of 30-second bursts of ‘all-out’ activity (Burgomaster et 

al., 2005), ‘low-volume HIIT’ (LV-HIIT), where individuals perform 10 x one-minute intervals 

at ‘near-maximal’ aerobic capacity (Little et al., 2011), and ‘aerobic interval training’ (AIT), 

consisting of four-minute intervals at approximately 80-95% of maximum heart rate (HRmax) 

(Wisløff et al., 2007). This is not an exhaustive list and variations of the above exist. Efforts 

also continue to try and identify the ‘minimum dose’ of interval-based exercise required to 

elicit benefits leading to additional protocols such as ‘reduced exertion HIIT’ (‘REHIT’) 

(Metcalfe et al., 2012; Vollaard, Metcalfe and Williams, 2017). LV-HIIT and SIT are utilised 

in Chapters 5 and 6 of this thesis and, therefore, the following paragraphs will focus on the 

evidence surrounding these protocols and their relevance to the management of NAFLD.   

2.4.1 Sprint interval training (SIT) 

SIT is fundamentally modelled on performing repeated bouts of the Wingate Anaerobic test 

(Bar-Or, 1987). Participants complete 30-s intervals at maximal effort separated by periods of 

active recovery, usually 4.5 min. In 1998, it was demonstrated in young, recreationally active 

individuals that six weeks of SIT (three sessions per week) improved cardiorespiratory fitness, 

measured as peak oxygen uptake (V̇O2 peak), along with markers of skeletal muscle glycolytic 

and oxidative metabolism (MacDougall et al., 1998). However, it was not until 2005 and the 

study by Burgomaster and colleagues (Burgomaster et al., 2005), that research in this area 

started to gain momentum. In a series of studies, this research group demonstrated that SIT for 

as little as two weeks (total of six sessions) improved muscle oxidative capacity and endurance 

exercise performance (Burgomaster et al., 2005; Gibala et al., 2006). These effects remained 

after a 6-week intervention and benefits were comparable with those elicited by moderate-

intensity aerobic exercise training (Gibala et al., 2006; Burgomaster et al., 2008). These 

findings have since been confirmed by a separate research group, who also reported that 

skeletal muscle microvascular function is improved by SIT (Cocks et al., 2013). Notably, two 

weeks of SIT does not appear to improve cardiac output, suggesting that the early 

improvements in aerobic capacity may be limited to peripheral benefits in skeletal muscle 

(MacPherson et al., 2011; Gibala, Gillen and Percival, 2014). Whilst the origin of the molecular 

signals responsible for these benefits are yet to be fully determined, peripheral improvements 

with SIT appear to be mediated by similar pathways to that of traditional moderate-intensity 

continuous training (Gibala, Gillen and Percival, 2014). 



~ 37 ~ 
 

SIT may also elicit benefits of relevance to cardiometabolic health. This is important because 

the interval-based approach of HIIT may support individuals to acquire the benefits of exercise 

that may be otherwise unachievable through continuous steady-state activity (Kessler, Sisson 

and Short, 2012). As mentioned previously, the study by MacDougall and colleagues reported 

an increase in V̇O2 peak with six weeks of SIT (MacDougall et al., 1998). This is important 

given the strong inverse relationship between cardiorespiratory fitness and mortality 

(cardiovascular and all-cause) (Blair et al., 1989; Kodama et al., 2009) These improvements in 

V̇O2 peak have since been confirmed with as little as two weeks of SIT in young healthy adults 

(Hazell et al., 2010; MacPherson et al., 2011; Astorino et al., 2012), as well as in overweight 

or obese, but otherwise healthy, men (Whyte, Gill and Cathcart, 2010; Cocks et al., 2015). A 

meta-analysis of RCTs has reported a moderate-to-large pooled effect size of SIT on V̇O2 peak 

(Gist et al., 2014). The study by Hazell and colleagues (Hazell et al., 2010) also reported a 

beneficial shift in body composition after six weeks of treadmill-based SIT with reductions in 

fat mass and increases in fat-free mass (FFM).  

SIT has also been shown to improve glycaemic control. Whilst fasted circulating insulin and 

glucose are unaffected, two weeks of SIT improves whole-body insulin sensitivity in healthy 

young active men, determined using both oral-glucose tolerance test and hyperinsulinaemic, 

euglycaemic clamp (Babraj et al., 2009; Richards et al., 2010). Six weeks of SIT also improves 

OGTT-derived insulin sensitivity (the Matsuda insulin sensitivity index; ISI) in young, inactive 

individuals (Shepherd et al., 2013). SIT is feasible for overweight or obese participants and, in 

accordance with evidence in normal-weight individuals, improves post-prandial insulin 

sensitivity and microvascular function to a similar extent as that of moderate-intensity training 

(Cocks et al., 2015). Similarly, two weeks of SIT does not appear to elicit sustained benefits in 

HOMA-IR in overweight individuals (72 hours post-training), although acute benefits for up 

to 24 hours are apparent (Whyte, Gill and Cathcart, 2010). 

2.4.2 Low-volume high-intensity interval training  

Whilst SIT may be feasible in healthy overweight and obese volunteers (Whyte, Gill and 

Cathcart, 2010; Cocks et al., 2015), it was suggested by Gibala and colleagues that SIT, as 

implemented in their initial studies, may not be safe or well-tolerated for all individuals (Little 

et al., 2010). With these considerations in place, LV-HIIT was developed as a more feasible 

protocol for populations with, or at risk of, chronic disease (Little et al., 2010). LV-HIIT retains 

a high exercise intensity, but one that is near to maximal aerobic capacity (approximately 80 
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to 95% of V̇O2 peak) as opposed to the supramaximal efforts of SIT. LV-HIIT is traditionally 

performed as 10 exercise intervals, each lasting one minute, separated by equal periods of low-

intensity active recovery. Notably, these recovery periods were 75-seconds in the initial study 

by Little and colleagues (Little et al., 2010), but reduced to 60 seconds thereafter (Hood et al., 

2011; Little et al., 2011). 

LV-HIIT has been shown to elicit similar benefits to those of SIT, in that V̇O2 peak, exercise 

performance and skeletal muscle mitochondrial function are all increased in young healthy 

individuals after as little as two weeks of training (Little et al., 2010; Jacobs et al., 2013). 

Furthermore, early benefits appear to be limited to skeletal muscle as cardiac output, 

haemoglobin concentration, haemoglobin mass and haematocrit are all reportedly unaffected 

(Jacobs et al., 2013). In overweight but otherwise healthy individuals, two weeks and six weeks 

of LV-HIIT have each been shown to improve mitochondrial capacity which, over a longer 

intervention, is accompanied by reduced fat mass (FM) and increased FFM (Hood et al., 2011; 

Gillen et al., 2013). At present, however, the effects of LV-HIIT on glycaemic control are 

unclear. Hood and colleagues (Hood et al., 2011) reported a reduced HOMA-IR in overweight 

individuals after two weeks of training, but OGTT-derived insulin sensitivity (Matsuda ISI) 

was unchanged after six weeks in a similar population (Gillen et al., 2013). However, when 

patients with T2DM perform two weeks of LV-HIIT, glycaemic control, determined by 

continuous glucose monitoring, is reportedly improved (Little et al., 2011). Over a 24-h period 

(measured 48 h after the final exercise bout), glucose concentrations in the interstitial fluid 

were reduced in response to standardised lunch and dinner meals. Furthermore, the mean 

glucose concentration over the whole 24-h period was lower after the LV-HIIT intervention. 

These benefits were accompanied by improved muscle mitochondrial capacity and higher 

protein content of GLUT-4 (Little et al., 2011). LV-HIIT has also been shown to improve V̇O2 

peak in patients with coronary artery disease (Currie et al., 2013). 

2.4.3 Perceptual benefits of SIT and LV-HIIT 

One of the most prominent perceptual barriers to physical activity is a lack of time (Trost et al., 

2002; Kelly et al., 2016). It has been suggested that SIT and LV-HIIT, along with other HIIT 

protocols, provide attractive and time-efficient strategies for individuals to incorporate 

structured exercise into their habitual routines (Gibala et al., 2006; Hood et al., 2011). A six-

interval SIT session and 10-interval LV-HIIT session contain just three and 10 minutes of high-

intensity exercise, respectively, which may be highly appealing to many individuals. 
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Furthermore, comparative studies by Gibala et al (2006) and Burgomaster et al (2008) reported 

that the benefits of SIT on exercise performance and muscle mitochondrial capacity were 

similar to traditional continuous moderate-intensity aerobic training, despite substantially 

lower weekly training time. It should be noted, however, that when accounting for recovery 

periods, warm-up and cool down (assuming five minutes each for the latter two) the absolute 

durations of SIT or LV-HIIT sessions are 40 and 30 minutes, respectively. 

Another important barrier to physical activity is the perception that exercise is not enjoyable 

(Salmon et al., 2003). It is plausible that some inactive individuals may find the prospect of 

completing intense but brief bursts of activity more appealing than that of prolonged CME. In 

turn, this may result in greater interest, motivation and, ultimately, adherence (Weston, Wisløff 

and Coombes, 2014). Sedentary young adults report greater enjoyment with LV-HIIT than 

when performing CME and more than 50% of participants in this study suggested that LV-

HIIT was a form of exercise that they would consider if training unsupervised (Jung, Bourne 

and Little, 2014). In a separate study in which individuals were randomised to a six-week 

intervention of LV-HIIT or CME training, perceived enjoyment of LV-HIIT increased 

throughout the programme whereas enjoyment was either unaffected or declined with the CME 

programme (Heisz et al., 2016). Interestingly, the rate of perceived exertion (RPE) during 

exercise training progressively decreases with intervals of shorter duration (Kilpatrick et al., 

2015), whilst protocols utilising 30- or 60-second intervals are more enjoyable than those using 

two-minute intervals (Martinez et al., 2015). In a study comparing LV-HIIT and SIT directly, 

active individuals report no differences in measures of affect, including enjoyment, between 

the two protocols (Wood et al., 2016). In overweight or obese individuals, measures of pleasure 

and enjoyment are no different when completing LV-HIIT compared to work-matched CME, 

despite a greater RPE (Little et al., 2014). Patients with coronary heart disease or T2DM report 

that a general interval-based approach to exercise is more enjoyable than a session containing 

CME (Coquart et al., 2008; Guiraud et al., 2011). However, neither of these studies assessed 

the perceptions of LV-HIIT or SIT specifically.  

Collectively, LV-HIIT and SIT appear to elicit physiological adaptations that are of relevance 

to cardiometabolic health, including cardiorespiratory fitness and insulin sensitivity. The 

magnitude of these effects are comparable to those elicited by CME and may occur with a 

lower total training volume. LV-HIIT and SIT may also be perceived by some individuals as 

more appealing, therefore representing an alternative strategy to engage in structured exercise 

that may be utilised within a personalised medicine approach. However, research in large 
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clinical trials with patient groups is required before definitive conclusions or wider 

recommendations can be made.  

2.5  Hepatokines 

The mechanisms underlying the relationship between hepatic steatosis and peripheral insulin 

resistance/glycaemic control are not fully understood (Takamura, Misu and Kaneko, 2016). 

Recent work has characterised the hepatic proteome as a group of 538 proteins, of which 168 

have the capacity to be secreted into the circulation (Meex et al., 2015). Many of these proteins 

have been shown to exert endocrine effects in peripheral tissues and as such, in analogy to 

‘myokines’ and ‘adipokines’, have been termed ‘hepatokines’ (Stefan and Häring, 2011). With 

evidence that hepatokine secretion is modulated by hepatic steatosis (Meex et al., 2015), it has 

been suggested that hepatokines may be one such mechanism that mediates the association 

between IHTG and peripheral insulin action/glucose homeostasis (Takamura, Misu and 

Kaneko, 2016). 

2.5.1 Fibroblast growth factor (FGF) 21 

The most widely studied hepatokine to date is fibroblast growth factor 21 (FGF21). While 

expressed in multiple tissues (including the liver, skeletal muscle and adipose tissue) (Fon 

Tacer et al., 2010), circulating concentrations are predominantly liver-derived (Markan et al., 

2014). FGF21 has been implicated in a number of metabolic processes, including the regulation 

of glucose and lipid metabolism (Cuevas-Ramos, Aguilar-Salinas and Gómez-Pérez, 2012; 

Jung, Yoo and Choi, 2016).  

The first evidence of FGF21 as a novel metabolic regulator was a series of experiments by 

Kharitonenkov and colleagues (Kharitonenkov et al., 2005). In these (and subsequent) 

experiments, administration of FGF21 increased glucose uptake in rodent and human 

adipocytes, independent of insulin action (Kharitonenkov et al., 2005; Xu, Lloyd, et al., 2009), 

and this may was potentially mediated by increased expression of the GLUT1 transporter 

(Kharitonenkov and Adams, 2014). Transgenic rodent models with FGF21 knockout gain 

weight, have impaired glycaemic control and develop hepatic steatosis (Badman et al., 2009; 

Kim et al., 2015). Conversely, overexpression of FGF21 results in lower body weight, 

adiposity, IHTG and improved glucose regulation (Kharitonenkov et al., 2005). 

In rodents, short term (< 14 days) treatment with FGF21 elicits reductions in circulating glucose, 

TG and insulin, as well as improved glucose tolerance, whole-body glucose disposal and 
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hepatic insulin sensitivity (Kharitonenkov et al., 2005; Berglund et al., 2009; Xu, Stanislaus, 

et al., 2009). These benefits are sustained following longer treatment (two to fifteen weeks) 

and are accompanied by reductions in body weight, body fat and IHTG, as well as enhanced 

insulin sensitivity in skeletal muscle and adipose tissue, and resistance to diet-induced obesity 

(Kharitonenkov et al., 2005; Coskun et al., 2008; Xu, Lloyd, et al., 2009; Camporez et al., 

2013). Reductions in circulating TG and IHTG may be mediated by reduced adipocyte lipolysis 

and hepatic expression of SREBP1c, and increased hepatic lipid oxidation (Gimeno and Moller, 

2014). Improved β-cell function has also been observed, but this finding has proved difficult 

to replicate in humans (Wente et al., 2006; Stefan and Häring, 2013). In obese, diabetic humans, 

28 days of treatment with an FGF21 analog (LY2405319) elicits an improved lipid profile 

(Gaich et al., 2013). At higher doses (10 or 20 mg per day), body weight and circulating insulin 

are reduced compared to baseline, but these changes are not significantly different when 

compared to a placebo (Gaich et al., 2013; Reitman, 2013). 

Somewhat paradoxically, circulating FGF21 concentrations are, in fact, elevated in obese 

adults with both normal or dysregulated glucose metabolism (Zhang et al., 2008; Chavez et al., 

2009; Mraz et al., 2009). Furthermore, it is positively correlated with BMI and WC, each of 

which have been reported as independent predictors of circulating FGF21 in groups of healthy 

individuals and those with impaired glycaemic control or NAFLD (Zhang et al., 2008; Li et 

al., 2010; Mashili et al., 2011; Cuevas-Ramos et al., 2012). FGF21 is also elevated in patients 

with NAFLD (Dushay et al., 2010; Li et al., 2010), but while hepatic expression and circulating 

concentrations of FGF21 appear to increase with severity of steatosis (Li et al., 2010; Yilmaz, 

Eren, et al., 2010), it is unable to distinguish individuals with isolated steatosis from those with 

NASH (Dushay et al., 2010). 

Circulating FGF21 is also higher in individuals with T2DM compared to those with normal 

glucose tolerance, but this may be mediated by increased adiposity rather than glycaemic 

dysregulation per se (Chavez et al., 2009; Mraz et al., 2009; Chen et al., 2011; Mashili et al., 

2011). FGF21 is, however, predictive of T2DM incidence (Chen et al., 2011; Bobbert et al., 

2013) and correlates with a number of markers of glucose homeostasis, including fasted insulin 

and glucose, and 2-h glucose determined during an OGTT (Zhang et al., 2008; Chavez et al., 

2009; Cuevas-Ramos et al., 2010; Mashili et al., 2011). FGF21 is also correlated with both 

whole-body and hepatic insulin sensitivity as measured using hyperinsulinaemic, euglycaemic 

clamp (Chavez et al., 2009). It is suggested that increased circulating FGF21 in individuals 

with, or at elevated risk of, metabolic dysfunction may be a result of ‘FGF21 resistance’ 
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whereby, in analogy to insulin resistance, impairments in tissue signalling in response to 

FGF21 result in increased secretion (Fisher et al., 2010; Potthoff, Kliewer and Mangelsdorf, 

2012). Notably, obese mice have been shown to have impaired signalling responses to FGF21 

infusion compared to lean controls (Fisher et al., 2010). However, this hypothesis requires 

further investigation. 

FGF21 is also positively correlated with self-reported physical activity (Cuevas-Ramos et al., 

2010, 2012) and V̇O2 peak is an independent predictor of circulating FGF21 concentrations 

(Taniguchi et al., 2014). Furthermore, aerobic or combined aerobic and resistance exercise 

training for three to twelve weeks elicits a reduction in circulating FGF21 concentrations in 

young and elderly individuals at risk of metabolic disease (Yang, Hong, et al., 2011; Scalzo et 

al., 2014; Taniguchi et al., 2016). In one of these studies, the reduction in FGF21 over five 

weeks of aerobic training was significantly positively associated with a reduction in IHTG, 

measured using 1H-MRS (Taniguchi et al., 2016). 

A single run to exhaustion in healthy rodents results in elevated concentrations of FGF21, and 

this increase has been attributed to increased hepatic expression (K. H. Kim et al., 2013). 

Circulating concentrations of FGF21 are also increased in humans after acute moderate- and 

high-intensity exercise in a stepwise manner, and these elevations are liver-derived (K. H. Kim 

et al., 2013; Hansen et al., 2015; Hansen, Pedersen, et al., 2016). Notably, this response may 

be blunted in obese individuals with impaired glycaemic control and completely abolished in 

individuals with overt T2DM (Slusher et al., 2015; Hansen, Pedersen, et al., 2016). 

The regulation of FGF21 expression is highly complex and not fully understood. It appears that 

its induction during states of fasting or overfeeding may be regulated by different mechanisms. 

Circulating NEFA, which occurs not only during fasting but also after strenuous exercise, may 

increase FGF21 expression in the liver and adipose tissue via activation of PPARα and PPARγ, 

respectively (Gälman et al., 2008; Cuevas-Ramos et al., 2012). Conversely, during energy 

surplus, increased circulating glucose may stimulate ChREBP to increase FGF21 expression 

(Iizuka, Takeda and Horikawa, 2009). FGF21 has also been shown to be regulated by the 

glucagon-to-insulin ratio (Hansen et al., 2015; Hansen, Pedersen, et al., 2016) and this may 

explain, at least in part, the increase in circulating FGF21 with acute exercise. When individuals 

exercise under the conditions of a pancreatic clamp, in which a change in the glucagon-to-

insulin ratio is prevented, circulating FGF21 is unchanged (Hansen et al., 2015; Hansen, 

Pedersen, et al., 2016). 
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2.5.2 Leukocyte cell-derived chemotaxin (LECT) 2 

LECT2 is a 16kDa secretory protein that is preferentially expressed in human liver cells and 

secreted into the circulation (Yamagoe, Mizuno and Suzuki, 1998). LECT2 was originally 

discovered when screening for novel neutrophil chemotactic proteins (Yamagoe et al., 1996) 

and has been previously shown to exert anti-inflammatory and tumour-suppressive effects in 

the liver (Anson et al., 2012). More recently, LECT2 has also been linked with obesity and its 

associated co-morbidities. Circulating concentrations of LECT2 are elevated with obesity and 

ultrasound-derived NAFLD (Okumura et al., 2013), and correlate with BMI, waist 

circumference, HOMA-IR, FPI, TG, and the Matsuda ISI (Okumura et al., 2013; Lan et al., 

2014).  

A series of experimental studies by Lan and colleagues (Lan et al., 2014) strongly implicates 

LECT2 in the development of obesity and insulin resistance. In liver biopsy tissue from 10 

individuals with T2DM and seven lean controls, hepatic mRNA levels of LECT2 are 

significantly correlated with BMI, whilst gene expression of LECT2 is increased in mice with 

HFD-induced obesity (Lan et al., 2014). LECT2 appears to be highly sensitive to acute changes 

in diet and transitioning between periods of HFD and regular chow results in elevation and 

normalisation of LECT2 concentrations, respectively (Chikamoto et al., 2016). Throughout 

these weight cycles, serum concentrations of LECT2 correlated with IHTG, but not adipose 

tissue weight (Chikamoto et al., 2016). 

LECT2 knockout (KO) attenuates increased body mass resulting from high-fat feeding (Lan et 

al., 2014). Compared to wild-type controls, LECT2 KO mice also display greater insulin-

stimulated Akt phosphorylation in skeletal muscle, but not in the liver or adipose tissue (Lan 

et al., 2014). Accordingly, KO mice require greater glucose infusion rate to maintain 

euglycaemia during steady-state hyperinsulinaemia than wild-type controls, but the 

suppression of EGP is no different between groups (Lan et al., 2014). In contrast, however, 

LECT2 treatment in cultured hepatocytes has been shown to induce steatosis, which is 

accompanied by significant reduction in hepatic IRS-1 phosphorylation and a tendency towards 

reduced Akt activation, suggesting a degree of hepatic insulin resistance (Hwang et al., 2015). 

Interestingly, there are no differences in body mass, blood glucose, plasma insulin and 

circulating LECT2 between KO and wild-type mice after 60 days of starvation, suggesting that 

LECT2 may play a role in states of over- but not under-nutrition (Lan et al., 2014). Very little 

is known about the influence of exercise on LECT2. However, LECT2 KO mice display greater 
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muscular endurance than wild-type controls (Lan et al., 2014). Furthermore, when wild-type 

mice perform three hours of aerobic treadmill exercise, hepatic expression and protein content 

of LECT2, as well as circulating concentrations, are all reduced (Lan et al., 2014). 

Little is known about the molecular regulation of LECT2 in obesity or during exercise. 

However, LECT2 expression is negatively regulated by adenosine monophosphate-activated 

protein kinase (AMPK) in cultured hepatocytes and hepatic AMPK expression is decreased 

and increased during high-fat feeding and acute exercise, respectively (Lan et al., 2014). 

Treatment of C2C12 myotubes with recombinant LECT2 leads to insulin resistance by 

increasing phosphorylation of cJNK, which in turn decreases insulin-stimulated Akt 

phosphorylation (Lan et al., 2014).  

2.5.3 Follistatin 

Follistatin is a glycosylated protein and member of the transforming growth factor (TGF) -β 

superfamily. It was originally discovered in ovarian fluid but has since been shown to be 

expressed in several tissues including the liver and skeletal muscle (Phillips and de Kretser, 

1998). Many of the functions of follistatin are facilitated through its natural inhibition of other 

TGFs, such as activin and myostatin (Phillips and de Kretser, 1998; Gilson et al., 2009).  

Serum follistatin concentrations are elevated in patients with NAFLD or T2DM (Yndestad et 

al., 2009; Hansen et al., 2013) and correlate with markers of insulin resistance including 

HOMA-IR, fasted plasma glucose (FPG) and 2-h glucose in some, but not all, studies (Wu et 

al., 2012; Hansen et al., 2013). Interestingly, one previous study reported lower plasma 

follistatin concentrations  in individuals with T2DM compared with healthy controls (Ueland 

et al., 2012). However, the activin to follistatin ratio was higher in these individuals. The 

potential that this ratio may be more important than concentrations of follistatin alone may 

explain discrepant findings. 

Follistatin has been shown to promote muscle growth, via the negative regulation of both 

myostatin and activin (Gilson et al., 2009; Yaden et al., 2014). Greater skeletal muscle mass 

may increase glycaemic control via an increased absolute capacity for post-prandial glucose 

uptake. Rodent models in which follistatin was overexpressed display substantially increased 

muscle mass compared to wild-type controls (Lee and McPherron, 2001). Follistatin is also 

reported to increase proliferation of pancreatic β-cells. Overexpression of follistatin in the 

pancreas of diabetic mice results in increased β-cell mass, lower circulating glucose 
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concentrations, greater insulin production and, ultimately, greater lifespan (Zhao et al., 2015). 

Administration of follistatin to rat β-cells in vitro lowers spontaneous cell death (Hansen, Rutti, 

et al., 2016) but follistatin treatment of islet cells from healthy human donors had no effect on 

insulin secretion in response to low or high doses of glucose (Hansen, Rutti, et al., 2016). 

Given that a variety of tissues express follistatin, identifying which of these contribute 

substantially to circulating concentrations is difficult. Historically, the consensus has been that 

plasma follistatin is the sum of spillover from autocrine and paracrine actions within the many 

tissues in which it is expressed (Hansen and Plomgaard, 2016). However, a series of intricate 

studies has offered greater insight into the regulation of systemic follistatin at rest and during 

exercise (Hansen et al., 2011; Hansen, Pedersen, et al., 2016; Hansen, Rutti, et al., 2016). 

Circulating follistatin is increased following acute aerobic and resistance exercise, but 

expression and secretion from the exercising muscle are unaffected (Hansen et al., 2011). This 

supports previous research reporting no changes in skeletal muscle expression of follistatin 

following acute or chronic exercise training (Jensky et al., 2007, 2010; Besse-Patin et al., 2014). 

Conversely, follistatin expression in the liver is increased with acute swimming exercise in 

rodents (Hansen et al., 2011). In follow-up experiments (during which the splanchnic 

circulation was isolated by the insertion catheters into the brachial artery and hepatic vein), 

follistatin was constantly secreted from the livers of healthy human men at rest and this was 

increased 5-fold by acute aerobic exercise (Hansen, Rutti, et al., 2016).  

The altered secretion of follistatin by the liver reported by Hansen et al was regulated by 

changes in the glucagon to insulin ratio (Hansen, Rutti, et al., 2016) and when acute exercise 

is performed under the conditions of a pancreatic clamp the increase in circulating follistatin is 

substantially attenuated (Hansen, Pedersen, et al., 2016). Changes in the glucagon to insulin 

ratio can also be detected in the systemic circulation and a smaller shift in this ratio in 

individuals with T2DM may explain a blunted follistatin response to exercise (Hansen, 

Pedersen, et al., 2016). The fact that the follistatin response is not completely abolished during 

pancreatic clamp indicates that other mechanisms are also responsible to some degree. Whilst 

these mechanisms remain unknown, evidence exists suggesting that hyperglycaemia, systemic 

low-grade inflammation and circulating NEFA are not responsible (Hansen et al., 2013; 

Hansen, Pedersen, et al., 2016). However, it has been speculatively suggested that activation 

of cyclic adenosine monophosphate (cAMP) by adrenaline may be an alternative mechanism 

that warrants investigation (Hansen, Pedersen, et al., 2016). 
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2.5.4 Selenoprotein P (SeP) 

SeP is a 60kDa glycoprotein encoded by the SEPP1 gene (Lebensztejn et al., 2016). It is 

primarily expressed in the liver and approximately 75% of circulating SeP is thought to be 

liver-derived (Burk and Hill, 2005, 2009). The role of SeP as a selenium supply protein is well 

established (Saito and Takahashi, 2002). More recently, however, potential roles within 

glucose homeostasis and insulin sensitivity have been revealed (Misu et al., 2010). From the 

same analyses that identified the link between BMI and LECT2 (Lan et al., 2014), an 8-fold 

greater hepatic expression of SeP was identified in individuals with T2DM along with a 

negative correlation between hepatic SEPP1 mRNA and peripheral insulin sensitivity (Misu et 

al., 2010). Circulating concentrations of SeP are also elevated in individuals with T2DM, 

compared with healthy controls, and positively correlate with FPG and HbA1c (Misu et al., 

2010). Positive associations have also been reported between circulating concentrations of SeP 

and BMI, WC, VAT, HOMA-IR, FPG and TG in individuals with normal and impaired glucose 

regulation (Yang, Hwang, et al., 2011). When 120 non-diabetic Korean individuals (60 with 

ultrasound-defined NAFLD and 60 controls matched for age and sex) were divided into tertiles 

based on circulating SeP concentrations, NAFLD prevalence increased from the lowest to the 

highest tertile (H. Y. Choi et al., 2013). Furthermore, a negative relationship has been reported 

between plasma concentrations of SeP and the liver attenuation index (LAI), a semi-

quantitative method of measuring intrahepatic fat whereby lower LAI is indicative of greater 

steatosis (H. Y. Choi et al., 2013).  

Treatment of cultured hepatic cell lines and primary mouse hepatocytes with glucose or 

palmitate increases expression of SEPP1 and SeP protein content (Misu et al., 2010). 

Conversely, gene expression and protein content are reduced by insulin in a time- and dose-

dependent manner (Misu et al., 2010), which may be mediated by inhibition of FoxO1 

(Speckmann et al., 2008). Activation of AMPK by salsalate results in greater FoxO1 activation 

and reverses palmitate-induced upregulation of SEPP1 (Jung, Choi, et al., 2013).  

When H4IIHEC hepatocytes and C2C12 myotubes are treated with SeP protein in vitro, 

insulin-stimulated phosphorylation of the insulin receptor and Akt are reduced, indicative of 

impaired insulin signalling. Accordingly, insulin-stimulated glucose uptake is decreased in 

myotubes, whilst glucose output from hepatocytes is increased (Misu et al., 2010). Injection of 

purified SeP in C57BL/6J mice causes glucose intolerance and insulin resistance at a dose 

which increases circulating concentrations by a magnitude that is physiologically similar to the 
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difference between healthy and T2DM humans (Misu et al., 2010). Phosphorylation of Akt 

was reduced in the liver and skeletal muscle of SeP-treated mice and this was associated with 

impaired hepatic suppression of EGP and peripheral glucose uptake, determined using 

hyperinsulinaemic euglycaemic clamp (Misu et al., 2010). Glucose intolerance and insulin 

resistance are improved in SeP KO mice and they are protected against the deleterious effects 

of a high-fat, high-sucrose diet (Misu et al., 2010). No study has investigated the effects of 

acute or chronic exercise on SeP. 

The mechanisms by which SeP disrupts hepatic and peripheral insulin signalling remains an 

area of investigation. The phosphorylation of AMPK and acetyl-coA carboxylase (ACC) is 

increased in the livers of SeP KO mice (Misu et al., 2010), whilst SeP treatment in cultured 

hepatocytes inhibits phosphorylation of these proteins. Furthermore, co-treatment with AICAR, 

a known activator of AMPK, prevents SeP-induced reductions in Akt phosphorylation (Misu 

et al., 2010). It is of note, however, that the phosphorylation of AMPK in skeletal muscle is 

unaffected by SeP administration, suggesting that tissue-specific mechanisms may exist (Misu 

et al., 2010). 

2.5.5 Fetuin-A 

Fetuin-A, also known as α2 Heremans-Schmid glycoprotein, is a 64kDa phosphorylated 

glycoprotein that is primarily expressed in, and secreted from, the liver (Denecke et al., 2003). 

Fetuin-A secretion is modulated by IHTG (Meex et al., 2015). Single nucleotide 

polymorphisms in the human AHSG gene (which codes for fetuin-A) are associated with 

susceptibility to T2DM (Siddiq et al., 2005; Andersen et al., 2008), whilst fetuin-A KO mice 

display improved insulin sensitivity (Mathews et al., 2002). Circulating fetuin-A is increased 

in obese and morbidly obese individuals when compared with healthy controls (Brix et al., 

2010; Ismail et al., 2012) and, when participants with varying degrees of glycaemic control are 

grouped into quartiles based on circulating fetuin-A concentrations, BMI progressively 

increases from the lowest to highest quartile (Ix et al., 2006; Xu et al., 2011; Dutta et al., 2014). 

Fetuin-A has also been shown to correlate with V̇O2 peak and is significantly greater in low 

compared to highly active individuals (Jenkins et al., 2011). 

Circulating fetuin-A is increased in patients with NAFLD when compared with healthy 

controls and NAFLD has been shown to be a strong predictor of fetuin-A, even after adjustment 

for age, sex, and other metabolic risk factors (Yilmaz, Yonal, et al., 2010; Haukeland et al., 

2012; von Loeffelholz et al., 2016). Fetuin-A has also been shown to correlate positively with 



~ 48 ~ 
 

IHTG determined using 1H-MRS or histological analysis of liver biopsy tissue (Stefan et al., 

2006; Kantartzis et al., 2010; von Loeffelholz et al., 2016). Interestingly, this increase with 

NAFLD is reported in individuals with normal and impaired glycaemic control (Ou, Yang, et 

al., 2012).  

Fetuin-A is also increased in individuals with T2DM versus non-diabetic controls (Ishibashi et 

al., 2010; Song et al., 2011; Dutta et al., 2014). It has also been reported as an independent 

predictor of incident T2DM, even after adjustment for appropriate confounding variables (Ix 

et al., 2012; Stefan et al., 2014). Studies have also reported a stepwise increase in fetuin-A 

from normal glucose tolerance, through impaired fasted glucose (IFG) or impaired glucose 

tolerance (IGT) to overt T2DM (Ishibashi et al., 2010; Ou, Yang, et al., 2012; Dutta et al., 

2014; H.-T. Wu et al., 2016). Fetuin-A is also significantly greater in insulin resistant obese 

individuals, compared with insulin-sensitive controls matched for age and adiposity (Klöting 

et al., 2010). It should be noted that the insulin resistant group in this study also had 

significantly greater VAT but, unfortunately, IHTG was not measured. Independent 

associations have also been identified between fetuin-A and HOMA-IR, as well as peripheral 

insulin sensitivity measured using hyperinsulinaemic, euglycaemic clamp (Song et al., 2011; 

Xu et al., 2011; Kaess et al., 2012; Stefan et al., 2014). 

Fetuin-A was first reported in 1989 as a strong natural inhibitor of insulin receptor tyrosine 

kinase in rat hepatocytes, a finding that was consequently confirmed in humans (Auberger et 

al., 1989; Srinivas et al., 1993). Fetuin-A promotes an inflammatory profile in mouse and 

human adipocytes and monocytes, and in the adipose tissue of mice (Hennige et al., 2008; 

Dasgupta et al., 2010). Fetuin-A attenuates lipogenic pathways in adipose tissue via inhibition 

of the PPARγ signalling pathway and promotion of lipolysis (Dasgupta et al., 2010), and serves 

as an adaptor protein for the activation of Toll-like receptor 4 (TLR4) to induce inflammatory 

signalling and insulin resistance (Pal et al., 2012). It has also been shown to inhibit GLUT-4 

translocation in C2C12 myotubes via inhibition of the insulin receptor (Dasgupta et al., 2010; 

Goustin, Derar and Abou-Samra, 2013; Malin, Mulya, et al., 2013). Finally, incubation of 

HepG2 cells and rat hepatocytes with fetuin-A promotes steatosis, which is associated with 

increased expression of SREBP-1c (Jung, Youn, et al., 2013). 

Positive energy balance increases circulating concentrations of fetuin-A (Lin et al., 1998; 

Samocha-Bonet et al., 2014). Treatment of HepG2 cells and rat hepatocytes with palmitate 

increases the expression, synthesis and secretion of fetuin-A and this is dependent on NF-κβ 



~ 49 ~ 
 

(Dasgupta et al., 2010). Treatment of HepG2 cells with glucose also increases expression of 

AHSG (Takata et al., 2009). In humans, fetuin-A tends to increase after 48 hours low-dose (30 

mL·h-1) intralipid infusion (Hussey et al., 2014). ER stress may mediate both glucose and 

palmitate-induced responses (Ou, Wu, et al., 2012).  

Circulating fetuin-A is reduced by weight loss resulting from combined diet and exercise 

(Stefan et al., 2006; Reinehr and Roth, 2008), energy restriction alone (Blüher et al., 2012; K. 

M. Choi et al., 2013; Baldry et al., 2017) and bariatric surgery (Brix et al., 2010). Moderate-

intensity aerobic exercise, with or without resistance training, failed to reduce fetuin-A in obese, 

healthy individuals or those with NAFLD or T2DM (Mori et al., 2008; Schultes et al., 2010; 

Yang, Hong, et al., 2011; Cuthbertson et al., 2016). This is despite a significant reduction in 

body weight, WC and BF%. In healthy sedentary men, 12 weeks of CME is associated with a 

mean 20% reduction in circulating fetuin-A (but this was not statistically significant) (Oh et 

al., 2017). Continuous exercise of higher intensity (85% HRmax) does elicit reductions 

circulating fetuin-A over as little as seven days, when exercise is performed each day (Malin, 

Mulya, et al., 2013). This beneficial reduction is sustained when similar exercise was 

performed five days per week over the course of 12 weeks (Malin et al., 2014). However, the 

lack of control group and the short duration between the final exercise session and post-training 

assessments (16-18 h) are important limitations to these studies. Nonetheless, these interesting 

data provide rationale to further investigate the effects of exercise on fetuin-A. No studies have 

investigated the effects of acute exercise. 
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CHAPTER 3 

GENERAL METHODS
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The following chapter provides details of procedures that are, with the exception of magnetic 

resonance and dual-step hyperinsulinaemic, euglycaemic clamp procedures, common to two or 

more experimental studies contained within this thesis. Each experimental chapter also 

contains a separate methods section that outlines further details unique to that study. 

3.1  Ethical approvals and participant recruitment 

Studies involving human participants (Chapters 4, 5 and 6) were conducted with full ethical 

approval from an appropriate governing body. Chapters 4 and 5 obtained approval from the 

East Midlands NHS research ethics committee and were sponsored by the University Hospitals 

of Leicester NHS Trust. Chapter 6 was sponsored by Loughborough University and approved 

by its research ethics committee (human participants sub-committee). Chapter 6 also gained 

subsequent approval by the research ethics committee of the University of Nottingham. 

Confirmation of approval for each study can be found in Appendix II. All studies were 

performed in accordance with the Declaration of Helsinki (World Health Organisation, 2013). 

Accordingly, all participants gave informed, written consent having been provided with all 

study information in writing and verbally, and having had the chance to discuss these with 

members of the research team. 

In all experimental chapters, participants were recruited by word-of-mouth and poster 

advertisement. Posters were distributed around local venues at which they would be visible to 

potential participants. Posters were also delivered to individual addresses within chosen 

postcodes via Royal Mail and distributed on social media platforms. Participants that had taken 

part in previous studies and given consent to be contacted in future were also contacted when 

they were identified as being potentially eligible. Furthermore, short online press releases were 

issued by Loughborough University and/or the University of Leicester. In Chapters 4 and 5 

(which gained NHS ethical approval) participants were also recruited through local primary 

care services and supported by the NIHR Clinical Research Network. General practice 

surgeries that volunteered to participate were provided with information about the study 

including participant eligibility criteria. They were also provided with pre-screening packs, 

which were posted to individuals that they identified as being potentially eligible. These packs 

contained more detailed study information and a contact details form, along with a pre-

addressed envelope so that interested individuals could return this information to the research 

team. Individuals who returned these packs were then contacted directly to discuss the study 

further and, if they remained interested, the formal recruitment process was initiated.  
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3.2  Participant pre-screening 

All participants completed pre-participation screening to assess their suitability for exercise 

testing/training according to the standard operating procedures and risk assessment (SOP/RA) 

of the NIHR Leicester-Loughborough BRU. These procedures (detailed in Appendix III) were 

developed in accordance with common best practice and guidance set out by the European 

Association for Cardiovascular Prevention and Rehabilitation (Borjesson et al., 2011). The 

specific components of screening that participants undertake differ according to the intensity 

of exercise for which participants are being screened, defined according to the metabolic 

equivalents of task (METs) associated with the exercise to be performed. All studies within 

this thesis include exercise greater than 3 METs and, therefore, participants were screened 

according to the ‘moderate to vigorous’ exercise pathway. This pathway is outlined below.  

Briefly, participants were first categorised as ‘active’ or ‘inactive’ according to self-reported 

weekly physical activity, assessed using the short version of the International Physical Activity 

Questionnaire (IPAQ; www.ipaq.ki.se [accessed 03/12/2017]; Appendix IV). ‘Active’ 

participants were those that reported performing at least 20 min of vigorous exercise on three 

or more days per week. These individuals completed the physical activity readiness 

questionnaire (PAR-Q; www.csep.ca/en/publications [accessed 03/12/2017]; Appendix V) and 

when all questions were answered ‘no’, they were cleared for exercise testing. If one or more 

questions were answered ‘yes’, participants were stratified as ‘low’, ‘moderate’ or ‘high’ risk. 

All inactive individuals were also stratified in this manner. Stratification was based on the 

results of a face-to-face screening session conducted by a healthcare professional (research 

nurse, senior cardiac nurse or general practitioner) and within this session, participants 

provided a medical history, underwent a physical exam, gave a fingertip capillary blood sample, 

were assessed for 10-year CVD risk (via the ‘SCORE’ algorithm; see Appendix VI), and 

received a resting electrocardiogram (ECG). When no clear risk factors were identified, 

participants were considered ‘low’ risk and were cleared for exercise testing. Participants were 

considered ‘high’ risk when any of the following were identified:  

• Diagnosis of chronic disease 
• BMI > 35 kg·m-2 
• 10-year risk of CVD ≥ 10%  
• Strong family history of CVD in first degree relatives < 50 years of age 
• Elevated total (> 8 mmol·L-1) or LDL-cholesterol (6 mmol·L-1) 
• Elevated blood pressure (>180/110 mmHg) 
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Participants who did not meet criteria for either ‘low’ or ‘high’ risk categories were considered 

‘moderate’ risk and, along with ‘high’ risk individuals, underwent an exercise ECG that was 

supervised by a qualified member of clinical staff. According to the NIHR Leicester-

Loughborough BRU SOP/RA, only high-risk individuals were required to undergo exercise 

ECG screening within a clinical setting. However, within the studies contained in this thesis, 

all exercise ECGs were performed in a clinical setting with access to a resuscitation team and 

post-arrest management. Provided there were no contraindications to exercise, participants 

were cleared for further exercise testing/training.  

3.3  Anthropometrics 

Participant height was measured to the nearest 0.1 cm using a vertical stadiometer (Seca Ltd, 

Germany), whilst body weight (to 0.01 kg) and total body fat percentage (BF%) (to 0.1 %) 

were measured using a segmental body composition analyser (BC-418, TANITA Europe BV, 

Amsterdam, the Netherlands). WC was measured to the nearest 0.1 cm using a tape measure at 

the level of the umbilicus. BMI was calculated as follows: 

BMI = body mass (kg) / height (m)2 

3.4  Blood pressure 

Systolic and diastolic blood pressure were measured from the left arm using an automated 

monitor (M6 Comfort, Omron, Milton Keynes, UK) and with an appropriately sized cuff. 

Participants were seated for a minimum of 15 min before measurements and sat quietly 

(without talking) for at least the final 5 min of this period. A minimum of three measurements 

were taken, the first of which was excluded, until blood pressure was stable. The mean of stable 

measurements was calculated. 

3.5  Fingertip capillary blood sampling 

Fingertip capillary blood sampling (CardioCheck, PTS diagnostics, Indianapolis, USA) was 

used to measure fasted glucose, TG, total cholesterol and HDL during screening procedures 

only (see Section 3.12 for details regarding the measurement of these biomarkers as study 

outcomes). Capillary (whole-blood) samples were analysed immediately after collection and 

LDL was estimated using the Friedewald equation (Friedewald, Levy and Fredrickson, 1972): 

LDL = total cholesterol – HDL – (TG / 2.2) 
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3.6  Measurement of expired gases 

In Chapters 4, 5 and 6, expired gases were measured continuously during submaximal and 

maximal exercise testing by indirect calorimetry (Metalyser 3B, Cortex Biophysik GmbH, 

Germany). Expired gases were also collected during experimental trials in Chapter 4. These 

gas analysers were serviced annually during the period these studies were undertaken and were 

calibrated prior to each use. A manual 3 L syringe was used to calibrate gas volume and a two-

stage calibration of air composition was performed. The latter involved calibration first against 

ambient air and then against a bottled cylinder of known gas composition (approximately 17% 

O2 and 5% CO2; supplied by Cranlea Human Performance Ltd., UK). Participants were fitted 

with an appropriately sized mask (Hans Rudolph 7450 Series, Cranlea Human Performance 

Ltd., UK), which was kept consistent for each visit. The same gas analyser was used for each 

participant across multiple visits. 

3.7  Submaximal exercise testing 

3.7.1 Exercise protocol 

During the exercise trial of Chapter 4, participants were required to run for 60 min at an 

intensity relative to V̇O2 peak (60%). To predict the treadmill speed required to elicit this 

intensity, a submaximal exercise test was performed. During this test, participants completed 

four stages of steady-state exercise on a motorised treadmill, each lasting four minutes. All 

stages were performed at 0% gradient but intensity increased progressively by increasing 

treadmill speed. Treadmill speeds were chosen in consultation with the participant (considering 

their habitual activity levels) with the intention of progressing from a light jog during stage one 

through to a hard, but not exhaustive, run in the final stage.  

3.7.2 Determination of treadmill speed required to elicit target relative intensity 

Mean steady-state values of oxygen uptake (V̇O2), carbon dioxide production (V̇CO2) and 

respiratory exchange ratio (RER) were calculated for each submaximal exercise stage using 

data collected during the penultimate 30 s of each stage (i.e. 3:01 to 3:30 min). Any stage in 

which RER was > 1.0 was excluded. Bivariate regression was performed between treadmill 

speed and steady state V̇O2 to predict the treadmill speed required to elicit 60 % of V̇O2 peak 

for use in experimental trials. 
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3.8  Maximal exercise testing 

3.8.1 Exercise protocols 

Maximal exercise tests were also performed in Chapters 4, 5 and 6 to assess V̇O2 peak as a 

marker of cardiorespiratory fitness. In Chapter 6, peak power output (PPO) was also assessed. 

Tests were performed using the same exercise mode as that utilised within experimental testing 

of each study. Accordingly, a motorised treadmill was used in Chapters 4 (Excite Med 

Technogym, Italy) and 5 (Woodway PPS 70 Plus, Woodway Inc., USA), whilst a stationary 

electromagnetically-braked cycle ergometer (Excalibur Sport, Lode BV, the Netherlands) was 

used in Chapter 6. 

In Chapter 4, participants completed maximal exercise testing using a treadmill speed predicted 

to elicit a steady-state heart rate (HR) of approximately 150 beats·min-1. This was determined 

using data from the submaximal exercise test performed approximately 15 min prior (see 

Section 3.7). In Chapter 5, participants were asked to self-select a speed that constituted a ‘brisk 

walk’. In both chapters, participants completed a 3 min warm-up at the selected speed on a 

minimal gradient (Chapter 4 = 1 %; Chapter 5 = 0 %), after which the test commenced and the 

gradient was increased by 1 % each min.  

In Chapter 6, participants completed a 5 min warm-up at 50 W, after which a ramp protocol 

was initiated with workload increasing by 16 W·min-1. Participants were instructed to maintain 

a pedalling cadence of approximately 80 revolutions·min-1 (rpm). Participants were 

familiarised with this test approximately seven days before baseline assessments. 

In each of these protocols, HR (T31, Polar Electro (UK) Ltd., United Kingdom) and rating of 

perceived exertion (RPE) (Borg, 1970) were recorded during the penultimate 10 s of each 

minute, whilst expired gases were measured throughout (see Section 3.6). Tests continued until 

one of the following occurred: 

• Test aborted due to abnormal ECG or other adverse event beyond expected levels of 

fatigue (this was classified as an incomplete test). 

• HR within 10 beats of age-predicted maximum (220 – age) AND respiratory exchange 

ratio (RER) > 1.15. 

• Volitional exhaustion (all chapters) OR participants unable to maintain a pedalling 

cadence of 80 rpm (Chapter 6 only). 
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3.8.2 Determination of peak oxygen uptake (V̇O2 peak) and peak power output (PPO) 

Breath-by-breath data were exported at 1 s intervals. V̇O2 peak was considered the maximum 

V̇O2 value when a rolling 30 s mean was calculated throughout maximal exercise tests. This 

invariably occurred within the final 2 min of the exercise test. No validation stage was 

performed in the studies within this thesis. PPO was measured as the power elicited at the point 

at which the test was stopped (Chapter 6 only).  

3.9  Magnetic resonance procedures  

In Chapter 6, magnetic resonance spectroscopy and imaging (MRS / MRI) were used for the 

measurement of IHTG, VAT and ScAT. All MR measurements were performed, after an 

overnight fast, on a Philips Achieva 3T system using a 32 channel XL-Torso coil, with a total 

scan duration of approximately 60 minutes.  

IHTG was measured from a 20x20x20 mm voxel within the right lobe of the liver using proton-

MRS (1H-MRS) with Stimulated Echo Acquisition Mode (STEAM) localization (repetition 

time=2046 ms to remove T1 bias) (Bawden, Scott and Aithal, 2017). Water-suppressed and 

unsuppressed spectra were acquired at four echo times (20, 30, 40 and 60 ms) and used to 

determine T2-corrected lipid-to-water ratios (lipid:water). IHTG was quantified as follows 

(Stephenson et al., 2013): 

 IHTG = (lipid:water) / [1+(lipid:water)] x 100 

VAT and ScAT were measured by MRI using a two-point modified Dixon technique (Philips), 

acquired in the transverse plane centred in L4/L5 of the spine. A fat mask was generated from 

fat images using a minimum threshold cut-off in intensity histograms (Nakai et al., 2010) and 

an in-house algorithm generated fat boundaries of visceral and subcutaneous regions to 

calculate VAT and ScAT volumes. 

3.10  Dual-step hyperinsulinaemic, euglycaemic clamp procedures  

In Chapter 6, hepatic and peripheral insulin sensitivity were assessed using a modified version 

of the hyperinsulinaemic, euglycaemic clamp technique as previously described (DeFronzo, 

Tobin and Andres, 1979; Johnston et al., 2013). All procedures were performed after an 

overnight fast.  
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A dual-stepped protocol was employed with stages of low- (20 mU·m-2·min-1) and high-dose 

(50 mU·m-2·min-1) insulin infusion, each lasting 120 minutes. A primed (4 mg·kg-1), 

continuous (0.04 mg·kg-1·hour-1) infusion of [6,6-D2] glucose tracer was started 120 minutes 

before the first hyperinsulinaemic stage and continued throughout to quantify the rate of 

endogenous glucose production (EGP). Arterialised venous blood glucose was measured every 

five minutes (YSI 2300 Stat plus, United Kingdom) and euglycaemia (4.5 mmol·L-1) was 

maintained by a variable infusion of 20% dextrose (mean coefficient of variation (CV) ± SD = 

1.6 ± 0.9 and 2.7 ± 1.1% at steady-state low- and high-dose insulin infusion, respectively). 

Each 100g bag of 20% dextrose was spiked with 1g of [6,6-D2] glucose to maintain plasma 

tracer enrichment. Aliquots of plasma and serum were collected every 15 minutes for 

subsequent batch analysis of glucose tracer enrichment and insulin concentration, respectively. 

An example data collection sheet can be found in Appendix VIII. 

Plasma glucose isotope enrichment (atoms percent excess) was quantified as the 

oxime/trimethylsilyl derivative via gas chromatography mass spectrometry (GC-MS; 7890B, 

MSD 5977A; Agilent Technologies, UK) using selected ion monitoring of the ions at m/z 319 

and 321 (CV = 6.4%). Rates of EGP in the basal state and at low-dose insulin infusion were 

calculated (Wolfe and Chinkes, 2005; Vella and Rizza, 2009) to allow assessment of hepatic 

insulin sensitivity in the basal and insulin-stimulated states, using the hepatic insulin sensitivity 

index (HISI) and percentage suppression of EGP during low-dose insulin infusion (%EGPsupp), 

respectively. Full details of glucose tracer calculations can be found in Appendix VIII, whilst 

HISI and %EGPsupp were calculated as outlined below (see Section 3.14). 

3.11  Isolation and storage of plasma and serum 

Venous blood samples were collected into ice-cooled tubes (Chapters 4 and 5: Monovette, 

Sarstedt, Leicester, UK; Chapter 6: Vacutainer, BD and Co., NJ, USA) which, apart from two 

exceptions (outlined below), were pre-treated with anticoagulant for the isolation of plasma. 

EDTA or Lithium Heparin were used as anticoagulant, dependent on analytical instructions. 

After collection, tubes were gently inverted 7-10 times and spun immediately in a refrigerated 

centrifuge (4 oC) for ≥10 min at 2383 x g. The plasma supernatant was removed and aliquoted 

for storage at -80 oC. During hyperinsulinaemic, euglycaemic clamps (Chapter 6), samples for 

the measurement of serum insulin were collected into tubes pre-treated with a clotting factor 

and left for 30 min prior to centrifugation. Plasma samples collected for the measurement of 

glucose tracer enrichment were pre-treated with fluoride and heparin. 
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3.12  Biochemical analyses 

Commercially available enzyme-linked immunosorbent assays (ELISAs) were used to measure 

plasma concentrations of FGF21, follistatin, fetuin-A (R & D Systems, Oxford, UK), LECT2 

(MBL International, Massachusetts, USA), insulin (Chapters 4 and 5 only) and glucagon 

(Chapter 4 only) (Mercodia, Uppsala, Sweden). All assays were performed according to 

manufacturer instructions, including respective curve fitting, with dilutions and washes 

performed manually using an automated multi-channel pipette (Sartorius, NY, USA). 

Measurement of absorbance and subsequent curve fitting were performed on an automated 

plate reader (Varioskan Flash Multiple Mode Reader, Thermo Scientific, Vantaa, Finland). In 

Chapter 6, serum insulin was quantified using radioimmunoassay (Millipore, USA). Plasma 

concentrations of full-length SeP were measured using a sol particle homogeneous 

immunoassay, utilising two types of SeP monoclonal antibody, as previously reported (Saito 

et al., 2001; Tanaka et al., 2016). In Chapters 4 and 6, circulating concentrations of glucose, 

TG, NEFA, total cholesterol, HDL, AST, ALT and GGT were analysed by enzymatic 

colorimetric methods using a benchtop analyser (Pentra 400; HORIBA ABX Diagnostics, 

Montpellier, France). In Chapter 5, plasma glucose, TG, total cholesterol, HDL and HbA1c 

were measured by the pathology laboratories of the University Hospitals of Leicester NHS 

Trust, whilst NEFA was sent to specialist laboratories at Nottingham University Hospitals NHS 

Trust. 

3.13  Calculation of plasma volume and adjustment of plasma protein 

concentrations 

In Chapter 4, where samples were collected on multiple occasions throughout trial days, blood 

haematocrit and haemoglobin concentrations were determined in each sample to monitor 

changes in plasma volume, calculated using established equations (Dill and Costill, 1974). 

Haematocrit was measured in triplicate with the collection of whole blood into heparinised 

microtubes, which were subsequently spun in a microliter-haematocrit centrifuge (MIKRO 20, 

Andreas Hettich GmbH and Co., Tuttlingen, Germany). Haemoglobin was measured in 

duplicate by the cyanmethaemoglobin method using a spectrophotometer (CECIL CE1011, 

Cecil Instruments Ltd., Cambridge, UK) from samples collected into a micropipette and 

dispensed into Drabkin’s solution. Circulating protein concentrations were corrected, as 

previously described (Sherk et al., 2013), when plasma volume deviated significantly from 

baseline. In Chapter 5, haematocrit and haemoglobin were requested from the pathology 
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laboratories of the University Hospitals of Leicester NHS Trust but, due to large amounts of 

missing data (~33%), adjustments for changes in plasma volume were not performed. 

3.14  Calculation of indices of insulin resistance 

Throughout this thesis, HOMA-IR (Matthews et al., 1985), adipose tissue insulin resistance 

index (Adipo-IR) (Gastaldelli et al., 2007) and HISI (Matsuda and DeFronzo, 1999) were 

calculated as follows: 

HOMA-IR = fasted plasma glucose [mmol∙L-1] x fasted plasma insulin [mU∙L-1] / 22.5 

Adipo-IR = fasted plasma NEFA [mmol∙L-1] x fasted plasma insulin [pmol∙L-1] 

HISI = 1000 / basal EGP [mg·m-2·min-1] x fasted plasma insulin [mU∙L-1] 

In Chapters 6 and 7, hepatic insulin sensitivity was also assessed in the insulin-stimulated state 

using the percentage suppression of EGP during low-dose insulin infusion (%EGPsupp), 

calculated as follows: 

 %EGPsupp = (EGP at low-dose insulin infusion – basal EGP) / basal EGP x 100 

3.15  Calculation of area under the curve (AUC) 

In Chapters 4 and 5, the total area under the concentration-time curve (AUC) for circulating 

biomarkers in each experimental trial was calculated using the trapezoid method. Total AUC 

was calculated as the sum of the areas between each consecutive measurement: 

Area between measurement A and B = (TB – TA) x (0.5 x [CA + CB]) 

where T = time and C = concentration. 

3.16  Statistical analyses 

Statistical analyses were performed using commercially available software (Chapters 4, 5 and 

6: SPSS version 23.0, SPSS Inc., USA; Chapter 7: Stata IC, Version 14.1, StataCorp LP, Texas, 

USA). In Chapters 4, 5 and 6, data were first assessed for their suitability for parametric 

statistical testing. Specifically, Shapiro-Wilk tests were performed to assess the distribution of 

data and in Chapter 4, which contained a between-subjects factor, Levene’s test was used to 

assess homogeneity of variance between groups. In bivariate correlation analyses, the 

distribution of each individual variable and the standardised residuals were assessed. If either 

the normality of distribution or homogeneity of variance assumptions were violated, a natural 

logarithmic transformation was applied to the raw data and the parametric assumptions were 
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re-assessed. If the assumptions were still not met, non-parametric statistical tests were used. 

All experimental studies in this thesis involved at least one within-measures factor and thus, 

when parametric tests were performed, Mauchly’s test of sphericity was used to determine 

whether the variances between all the pairs of measurements were similar. When sphericity 

could not be assumed, a correction was applied to the degrees of freedom. In these instances, 

the Greenhouse-Geisser epsilon was consulted and when < 0.75, this correction was used. 

When the Greenhouse-Geisser epsilon was > 0.75 the Huynh-Feldt correction was applied 

(Atkinson, 2001).  

All normally distributed data are presented as the arithmetic mean with either standard 

deviation or standard error of mean (Lydersen, 2015). Non-normally distributed data are 

presented as the median with interquartile range (IQR). Statistical significance was considered 

at the 5% level (P ≤ 0.05) and, where appropriate, probability (P-) values were adjusted for 

multiple comparisons using the Holm-Bonferroni correction (Holm, 1979), to reduce the 

chance of type I statistical error. 
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CHAPTER 4 
 

THE INFLUENCE OF ADIPOSITY AND ACUTE EXERCISE 
ON CIRCULATING HEPATOKINES IN NORMAL WEIGHT 

AND OVERWEIGHT/OBESE MEN 
 

 

 

 

 

 

 

 

The study presented in this chapter has been published and has the following citation: 

Sargeant JA, Aithal GP, Takamura T et al. (2018). Applied Physiology Nutrition and 

Metabolism. 43: 482-490. 

This manuscript was also selected by the editor as the featured content for the May issue of 

Applied Physiology, Nutrition and Metabolism (Appendix I).  

This chapter presents the published manuscript but with some aspects of the methods section 

condensed or removed to avoid repetition within this thesis. When this occurs, readers are 

directed to the appropriate sections of the General Methods for more information. 
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4.1  Abstract 

Background: Hepatokines are liver-secreted proteins with potential to influence glucose 

regulation and other metabolic parameters. This study investigated differences in adiposity 

status on five novel hepatokines and characterised their response to acute moderate-intensity 

exercise in groups of normal weight and overweight/obese men.  

Methods: Twenty-two men were recruited into normal weight and overweight/obese groups 

(BMI: 18.5 to 24.9 and 25.0 to 34.9 kg∙m-2). Each completed two experimental trials, exercise 

and control. During exercise trials, participants performed 60 min of moderate-intensity 

treadmill exercise (~60% V̇O2 peak) and then rested for 6 h. Participants rested throughout 

control trials. Circulating fibroblast growth factor-21 (FGF21), follistatin, leukocyte cell-

derived chemotaxin 2 (LECT2), fetuin-A and selenoprotein-P (SeP) were measured throughout.  

Results: Fasted (resting) FGF21 and LECT2 were higher in overweight/obese individuals (129% 

and 55%; P ≤ 0.01) and correlated with indices of adiposity and insulin resistance; whereas 

circulating follistatin was lower in overweight/obese individuals throughout trial days (17%, P 

< 0.05). In both groups, circulating concentrations of FGF21 and follistatin were transiently 

elevated after exercise for up to 6 h (P ≤ 0.02). Circulating fetuin-A and SeP were no different 

between groups (P ≥ 0.19) and, along with LECT2, were unaffected by exercise (P ≥ 0.06). 

Conclusions: These findings show that increased adiposity is associated with a modified 

hepatokine profile, which may represent a novel mechanism linking excess adiposity to 

metabolic health. Furthermore, acute perturbations in circulating FGF21 and follistatin after 

exercise may contribute to the health benefits of an active lifestyle. 
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4.2  Introduction 

Recent work characterising the hepatic proteome has identified 168 proteins which can be 

secreted and potentially exert endocrine-like effects in distal sites (Meex et al., 2015). A 

number of these ‘hepatokines’ are associated with measures of adiposity (Chen et al., 2011; 

Xu et al., 2011; Yang, Hwang, et al., 2011; Lan et al., 2014) and have been shown to exert 

metabolic effects within various central and peripheral tissues (Misu et al., 2010; Camporez et 

al., 2013; Malin, Mulya, et al., 2013; Lan et al., 2014; Hansen, Rutti, et al., 2016). Together, 

this evidence has prompted suggestions that hepatokines represent a potential mechanism 

linking adiposity and metabolic health and may be novel therapeutic targets to combat obesity-

related insulin resistance and associated metabolic disease. 

To date, much of the research concerning hepatokine function and metabolism has focused on 

their direct influence on tissue-specific insulin sensitivity and systemic glucose metabolism. 

The most frequently studied, fibroblast growth factor-21 (FGF21), has been shown to improve 

glucose metabolism in the liver, skeletal muscle and adipose tissue (Camporez et al., 2013); 

whilst follistatin may promote pancreatic beta cell survival and suppress circulating glucagon 

(Hansen, Rutti, et al., 2016). Other hepatokines may act to promote insulin resistance. For 

example, within skeletal muscle, leukocyte cell-derived chemotaxin 2 (LECT2) (Lan et al., 

2014), selenoprotein-P (SeP) (Misu et al., 2010) and fetuin-A (Malin, Mulya, et al., 2013) have 

each been shown to directly interfere with distinct aspects of glucose metabolism. 

Observational evidence in humans has identified associations between these hepatokines and 

adiposity, insulin resistance, ectopic lipid and the metabolic syndrome (Zhang et al., 2008; Li 

et al., 2010; Chen et al., 2011; Xu et al., 2011; Yang, Hwang, et al., 2011; H. Y. Choi et al., 

2013; Hansen et al., 2013; Okumura et al., 2013; Lan et al., 2014). However, human 

experimental research is now required to scrutinise the pathophysiological relevance of these 

novel proteins in vivo.  

Current evidence demonstrates that exercise training reduces circulating levels of fetuin-A and 

FGF21, and responses correlate with improvements in insulin sensitivity and intrahepatic fat 

(Malin, Mulya, et al., 2013; Malin et al., 2014; Taniguchi et al., 2016). Given that single bouts 

of exercise transiently enhance insulin sensitivity (Sylow et al., 2017), a handful of studies 

have also investigated the acute influence of exercise on circulating hepatokines, speculating 

that modulation of the hepatokine profile may be implicated in the benefits induced. This 

hypothesis is strengthened by the knowledge that exercise acutely increases circulating non-
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esterified fatty acids (NEFA) and glucagon, and activates hepatic AMP-activated protein 

kinase (AMPK) (Camacho et al., 2006; Hansen, Pedersen, et al., 2016). Each of these have 

been implicated in the regulation of at least one of the hepatokines outlined above (Jung, Choi, 

et al., 2013; Lan et al., 2014; Trepanowski, Mey and Varady, 2014; Hansen, Pedersen, et al., 

2016). Whilst these studies remain limited in number, the available evidence shows that 

moderate- to high-intensity aerobic exercise acutely increases circulating levels of FGF21 and 

follistatin (Slusher et al., 2015; Hansen, Pedersen, et al., 2016; Hansen, Rutti, et al., 2016), but 

responses may differ between normal weight and obese individuals, and between individuals 

with normal and dysregulated glucose metabolism (Slusher et al., 2015; Hansen, Pedersen, et 

al., 2016). Additional work is required to determine whether the FGF21 and follistatin 

responses to acute exercise differ between normal weight and overweight/obese individuals 

who are free of diagnosed metabolic disease, and whether similar responses occur in other 

relevant hepatokines.  

The purpose of this study was two-fold. Firstly, we sought to investigate differences in 

adiposity status on FGF21, follistatin, LECT2, SeP and fetuin-A in normal weight and 

overweight/obese men. Secondly, we characterised the effect of an acute bout of moderate-

intensity exercise on circulating concentrations of these hepatokines in order to explore their 

potential role as mediators of exercise-induced improvements in glycaemic control and other 

metabolic parameters. We hypothesised that overweight/obese individuals would have elevated 

circulating concentrations of hepatokines at rest and that an acute bout of moderate-intensity 

exercise would beneficially alter circulating hepatokine profiles; by reducing LECT2, SeP, and 

fetuin A, whilst increasing FGF21 and follistatin. 
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4.3  Materials and methods 

4.3.1 Ethical approval and participant recruitment 

After receiving approval from the East Midlands NHS Research Ethics committee 

(13/EM/0290), 22 non-smoking men were recruited equally into normal weight and 

overweight/obese groups (BMI: 18.5 to 24.9 and 25.0 to 34.9 kg∙m-2, respectively); providing 

written, informed consent to participate (see Section 3.1 for more details). This sample size 

was chosen based on previous studies that documented significant changes in hepatokines 

(FGF21 and follistatin) in response to acute exercise; as well as differences between participant 

groups (normal weight vs. obese and normal vs. impaired glucose regulation) (Slusher et al., 

2015; Hansen, Pedersen, et al., 2016; Hansen, Rutti, et al., 2016). Participants in the current 

study were free of diagnosed chronic disease and were not taking medications known to affect 

glucose or lipid metabolism, or blood pressure. Participants were also ‘inactive’ or ‘moderately 

active’ according to the IPAQ (www.ipaq.ki.se [accessed 03/01/2017]) and were weight stable 

in the three months prior to enrolment (< 2 kg self-reported weight change). 

4.3.2 Participant pre-assessment 

During a pre-assessment visit, participants were screened to determine eligibility and suitability 

for exercise testing as outlined in General Methods (see Section 3.2). Height, weight, BF % 

and WC were also measured (see Section 3.3). In this study, participants were excluded if blood 

pressure was greater than 160/100 mmHg. 

On a separate occasion, participants completed a 16-minute, progressive sub-maximal exercise 

test followed, after approximately 15 minutes, by a ramped maximal exercise test to determine 

V̇O2 peak and predict the treadmill speed to elicit 60 % of V̇O2 peak during experimental trials 

(see Sections 3.6 to 3.8 of General Methods for further detail).  

In the 48 h before main trials, participants refrained from strenuous physical activity, alcohol 

and caffeine, and standardised their dietary intake using weighed records. On the evening 

before main trials, participants were provided with a standardised meal (3138 kJ; 71% 

carbohydrate, 18% fat, 11% protein) to consume before 21:00, after which only water was 

permitted until the start of the trials.  



~ 66 ~ 
 

4.3.3 Experimental trials 

Participants completed two experimental trials, control and exercise, in a counterbalanced order 

and separated by approximately one week. On the morning of each trial, participants arrived at 

the laboratory at 08:30, at which point an intravenous cannula (21 G; Venflon, Becton 

Dickinson, Sweden) was inserted into an antecubital vein. Trials were then initiated with a 

venous blood sample taken at ~09:00 (0 h) and additional samples were collected at 1, 1.5, 2.75, 

4 and 7 h (Figure 4.1). During exercise trials, participants completed a 60-min bout of 

moderate-intensity treadmill exercise (60% of V̇O2 peak) between 0 and 1 h, and then rested in 

the laboratory for the remainder of the trial (1-7 h). HR and RPE (Borg, 1970) were recorded 

every 15 min during exercise, and expired air was collected throughout for ongoing 

measurement of V̇O2 and V̇CO2. If necessary, treadmill speed was adjusted to maintain the 

desired exercise intensity. Participants rested for the entirety of control trials and samples of 

expired air were collected between 0 and 1 h to quantify resting energy expenditure; allowing 

the calculation of net energy expenditure elicited by exercise. Participants were provided with 

a standardised breakfast (2690 kJ; 72% carbohydrate, 18% fat, 10% protein) and lunch (3138 

kJ; 43% carbohydrate, 25% fat, 32% protein) at 1.5 and 4 h, respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Schematic representation of experimental trial days.  

Acute moderate-intensity exercise (exercise trials) or measurement of resting energy 
expenditure (control trials) 
 
Standardised meal consumed 
 
Venous cannula inserted 
 
Venous blood sample collected 

6 0 1 2 3 4 5 7 
Time (hours) 
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4.3.4 Biochemical analyses 

Venous blood samples were collected into ice-cooled monovettes pre-treated with 

anticoagulant (Sarstedt, Leicester, UK) and plasma was isolated as outlined in General 

Methods (see Section 3.11). Plasma concentrations of FGF21, follistatin, fetuin-A, LECT2, 

insulin, glucagon and SeP were measured at each time point (see Section 3.12). The mean 

within-batch co-efficient of variation (CV) for these assays was ≤ 5.5%. Circulating 

concentrations of NEFA, glucose, TG, total cholesterol, AST, ALT and GGT were also 

measured (within batch CV ≤ 4.2%). All were measured at 0 h only with the exception of 

plasma NEFA, which was measured at each sample time point. Insulin resistance was assessed 

by HOMA-IR and Adipo-IR (see Section 3.14) (Matthews et al., 1985; Gastaldelli et al., 2007). 

Plasma volume was calculated in each whole blood sample using established equations (Dill 

and Costill, 1974) and circulating protein concentrations were corrected when plasma volume 

deviated significantly from baseline (see Section 3.13 for more details).  

4.3.5 Statistical analyses 

Two-tailed, independent samples t-tests were used to compare differences in participant 

characteristics, fasted plasma protein and metabolite concentrations, and characteristics of the 

exercise performed between normal weight and overweight/obese groups. When parametric 

assumptions were not met before or after log transformation, non-parametric Wilcoxon 

matched-pairs signed rank test was used. Relationships between fasted hepatokine 

concentrations and other participant characteristics were assessed using bivariate Pearson’s and 

Spearman’s correlation analyses as appropriate. Three-way, mixed-design analysis of variance 

(ANOVA), consisting of two within-participant factors (trial and sample time) and one 

between-participant factor (group), was used to assess hepatokine responses to exercise. After 

inspection of main effects, the three-way interaction between trial, time and group was used to 

assess whether hepatokine responses during and after exercise, when compared to the control 

trial, differed between normal weight and overweight/obese groups. When this was not 

significant, the two-way interaction between trial and time was used to investigate the 

hepatokine response to exercise in the two groups combined. Statistically significant two-way 

interactions were investigated further with two-tailed paired samples t-tests to identify the 

times at which circulating concentrations differed between control and exercise trials. Due to 

the sample size in this study, no correction for multiple comparisons was applied.  To help 

clarity in graphical presentation, total area under the concentration-time curve (AUC) was also 
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calculated for each experimental trial (see Section 3.15) and these data were analysed 

statistically using two-way mixed design ANOVA.   



~ 69 ~ 
 

4.4  Results 

4.4.1 Participant characteristics 

Descriptive characteristics of the normal weight and overweight/obese groups can be found in 

Table 4.1. By design, the overweight/obese group had higher BMI, body mass, body fat 

percentage and waist circumference, but age was similar between groups. There was no 

difference in absolute cardiorespiratory fitness between groups but relative fitness was greater 

in the normal weight individuals due to their lower body mass. Fasted plasma glucose, insulin 

and HOMA-IR were similar between groups, but fasted plasma lipids were greater in the 

overweight/obese individuals, whilst Adipo-IR tended to be higher. There were no significant 

differences in AST, ALT or GGT between groups (all P ≥ 0.35; data not shown). 

4.4.2 Fasted plasma hepatokine concentrations and associations with metabolic variables 

The overweight/obese individuals had greater fasted plasma concentrations of LECT2 and 

FGF21, but fasted concentrations of follistatin, fetuin-A and SeP were similar between groups 

(Table 4.1). Fasted circulating LECT2 and FGF21 were positively correlated with each other 

(rho2 = 36.9%, P = 0.03), body mass, BMI, WC, BF%, NEFA, TG, Adipo-IR and glucagon (r2 

≥ 19.4%, P ≤ 0.02 or rho2 ≥ 17.6%, P ≤ 0.05), and negatively with relative V̇O2 peak (r2 ≥ 

27.0%, P ≤ 0.01). FGF21 was also marginally positively correlated with fasted plasma glucose 

(r2 = 18.1%, P = 0.048), whilst LECT2 was strongly positively correlated with HOMA-IR (rho2 

= 43.2%, P = 0.001). Significant negative correlations were found between fasted 

concentrations of follistatin and the AST:ALT ratio (r2 = 18.5%, P = 0.05), fetuin-A and age 

(rho2 = 25%, P = 0.02), and between fasted concentrations of SeP and ALT (r2 = 19.4%, P = 

0.04). Further details of all significant correlations can be found in Appendix VII. 
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Table 4.1 Participant characteristics 

a Heterogeneous variance between groups, non-parametric analyses performed and data 

presented as median (interquartile range). All other data presented as mean ± SD. Symbols 

indicate statistically significant differences between groups (* < 0.05; † ≤ 0.01; ‡ < 0.001). 

 Normal weight 
(n=11) 

Overweight/obese 
(n=11) 

Anthropometry       

BMI (kg·m-2) a 23.4 (1.6) 29.2 (4.5)‡ 

Age (years) 36 ± 15 45 ± 14 

Body weight (kg) 69.8 ± 1.5 92.3 ± 3.4‡ 

Body fat (%) 16.9 ± 3.6 26.4 ± 4.0‡ 

Waist circumference (cm) 81.6 ± 5.3 96.0 ± 7.8‡ 

Cardiorespiratory Fitness       

Absolute V̇O2 peak (L·min-1) 3.46 ± 0.74 3.21 ± 1.21 

Relative V̇O2 peak (mL·kg BW-1·min-1) 50.1 ± 11.9 38.5 ± 9.7† 

Circulating Metabolic Risk Factors       

Total cholesterol (mmol·L-1) 4.12 ± 0.73 4.91 ± 0.89* 

TG (mmol·L-1) 1.04 ± 0.15 1.82 ± 0.24† 

NEFA (mmol·L-1) 0.39 ± 0.18 0.58 ± 0.14† 

FPG (mmol·L-1) 4.9 ± 0.2 5.0 ± 0.3 

FPI (pmol·L-1) 30.0 ± 12.2 37.1 ± 19.3 

Insulin Sensitivity       

HOMA-IR 0.95 ± 0.39 1.21 ± 0.67 

Adipo-IR 12.57 ± 8.99 21.98 ± 13.01 

Hepatokines       

FGF21 (pg·mL-1) 83 ± 55 190 ± 74‡ 

Follistatin (pg·mL-1) 795 ± 257 670 ± 154 

LECT2 (ng·mL-1) 31 ± 10 48 ± 17† 

Fetuin-A (µg·mL-1) 541 ± 137 497 ± 99 

SeP (µg·mL-1) 3.01 ± 0.39 2.81 ± 0.30 
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4.4.3 Exercise characteristics 

Participants in the normal weight group exercised at a greater treadmill speed due to their 

higher relative cardiorespiratory fitness. However, the relative intensity of the exercise 

performed was similar between groups (Table 4.2). Consequently, given the higher energy cost 

of exercise in the overweight/obese group as a result of their higher body mass, the net energy 

expenditure during exercise trials was similar between groups (P = 0.98). During the exercise 

trials, there was a significant reduction in plasma volume immediately post-exercise 

irrespective of group (0 vs 1 h: 58.5 ± 0.7 vs. 53.7 ± 0.7%; P < 0.01), which returned to baseline 

by 1.5 h.  

 

Table 4.2 Exercise characteristics 

 Normal weight 
(n=11) 

Overweight/obese 
(n=11) 

Treadmill speed (km·h-1) 7.6 ± 1.0 6.8 ± 1.0* 

V̇O2 elicited (%V̇O2 peak) 59.3 ± 2.8 57.9 ± 2.3 

Net energy expenditure (kJ) 2211 ± 507 2217 ± 509 

Heart rate (beats·min-1) 141 ± 29 139 ± 19 

Rating of perceived exertion (6-20) 13 ± 1 12 ± 1 

Data presented as mean ± SD. *indicates a statistically significant difference between groups 

(P < 0.05). 

 

4.4.4 Circulating hepatokine responses to exercise 

Plasma FGF21 concentrations were higher in the overweight/obese group, irrespective of trial 

or time (Figure 4.2a; P = 0.003), but there was no interaction between trial, time and group (P 

= 0.19). With groups combined, there was a significant two-way interaction between trial and 

time for circulating FGF21 (Figure 4.3a; P < 0.001), and post-hoc analyses revealed that 

circulating concentrations were significantly higher at 1, 1.5 and 4 h in the exercise trial, 

compared with control (all P ≤ 0.005). Accordingly, the total AUC for FGF21 was significantly 

greater in the overweight/obese compared with the normal weight individuals (Figure 4.2b; P 

= 0.003), and in the exercise versus the control trials (Figure 4.3b; P = 0.003). However, there 

was no interaction between group and trial (P = 0.65).  
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Circulating follistatin was lower in the overweight/obese versus the normal weight group 

(Figure 4.2c; P = 0.05), but the interaction between trial, time and group was not significant (P 

= 0.94). In the whole study population, there was a significant two-way interaction between 

trial and time for plasma follistatin (Figure 4.3c; P = 0.001). Post-hoc analyses identified 

significantly higher concentrations at 2.75, 4 and 7 h in the exercise trial (P ≤ 0.02). Similarly, 

the total AUC for follistatin was significantly lower in the overweight/obese group (Figure 4.2d; 

P = 0.05) and greater in the exercise trials (Figure 4.3d; P < 0.01), but there was no interaction 

between group and trial (P = 0.41).  

Circulating LECT2 was higher in the overweight/obese group versus the normal weight group, 

(Figure 4.2e; P = 0.009), but there was no interaction between trial, time and group (P = 0.38). 

For plasma concentrations of LECT2, the two-way interaction between trial and time in the 

whole study population was also not significant (Figure 4.3e; P = 0.06). The total AUC 

analyses for LECT2 mirrored these results with a significantly greater AUC in the 

overweight/obese group (Figure 4.2f; P < 0.01), but no significant difference between the 

control and exercise trials (Figure 4.3f; P = 0.07) and no interaction between group and trial (P 

= 0.45). 

Circulating concentrations of fetuin-A and SeP were similar between groups (Figures 4.2g and 

4.2i; P ≥ 0.20) and there were no interactions between trial, time and group (P ≥ 0.07). 

Furthermore, with groups combined, there were no interactions between trial and time (Figures 

4.3g and 4.3i; P ≥ 0.11). In accordance, the total AUC for fetuin-A (Figures 4.2h and 4.3h) and 

SeP (Figures 4.2j and 4.3j) were similar between groups and between trials, and there were no 

significant interactions (all P ≥ 0.17).  
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 Figure 4.2 Hepatokine responses in normal weight and overweight/obese groups. Circulating 

plasma concentrations FGF21 (a-b), follistatin (c-d), LECT2 (e-f), fetuin-A (g-h) and SeP (i-j) during 

control and exercise trials in both normal weight and overweight/obese groups. Meals were provided at 

1.5 and 4 h. Exercise was performed between 0 and 1 h in the exercise trial only. Data presented as 

mean ± SEM. AUC represents the total area under the concentration-time curve for the given 

experimental day. P-values denote significant main effect of group irrespective or time or trial. 
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 Figure 4.3 Hepatokine exercise responses with groups combined to a single population. 

Circulating plasma concentrations FGF21 (a-b), follistatin (c-d), LECT2 (e-f), fetuin-A (g-h) and 

SeP (i-j) during control and exercise trials in the whole study population combined. Meals were 

provided at 1.5 and 4 h. Exercise was performed between 0 and 1 h in the exercise trial only. Data 

presented as mean ± SEM. AUC represents the total area under the concentration-time curve for 

the given experimental day. * indicates significant difference from control trial at the same time 

point (all P ≤ 0.02). P-values on AUC plots denote significant difference between control and 

exercise trials.  
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4.4.5 Circulating responses of NEFA, glucagon and insulin to exercise 

Despite differences in the fasted state, circulating concentrations of NEFA were similar 

between groups throughout experimental trials (P = 0.09), and there was no significant 

interaction between trial, time and group (P = 0.13). However, with groups combined there 

was a significant two-way interaction between trial and time (Figure 4.4a; P < 0.001) and post-

hoc analyses revealed significantly higher concentrations of NEFA in the exercise trial at 1, 

1.5, 2.75 and 7 h (P ≤ 0.04). 

Circulating concentrations of glucagon, insulin and glucagon to insulin ratio were also similar 

between groups (P ≥ 0.27), and the three-way interactions between trial, time and group were 

not significant for any of these outcomes (P ≥ 0.16). However, in the whole study population, 

there were significant two-way interactions between trial and time for all of glucagon, insulin 

and the glucagon to insulin ratio (Figure 4.4b-d; P ≤ 0.03). Post-hoc tests revealed the glucagon 

to insulin ratio was significantly greater at 1 and 1.5 h in the exercise trial when compared to 

the control trial (P ≤ 0.02). This was primarily driven by significantly higher concentrations of 

glucagon (P ≤ 0.01) and occurred despite significantly higher concentrations of insulin at 1.5 

h in the exercise trial (P = 0.02). Glucagon remained elevated in the exercise trial at 2.75 h (P 

= 0.03) but the consequential increase in the glucagon to insulin ratio was not statistically 

significant (P = 0.08). 
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Figure 4.4 Responses in NEFA, glucagon and insulin with groups combined to a single 

population. Circulating plasma concentrations (a) NEFA (b) glucagon (c) insulin and (d) the glucagon 

to insulin ratio during control and exercise trials in the whole study population combined. Meals were 

provided at 1.5 and 4 h. Exercise was performed between 0 and 1 h in the exercise trial only. Data 

presented as mean ± SEM. * indicates significant difference from control trial at the same time point 

(all P ≤ 0.04).  
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4.5  Discussion 

This study investigated the impact of adiposity and acute exercise on five candidate 

hepatokines which have been identified as novel circulating proteins linking the liver and 

peripheral metabolism. Our findings suggest that circulating levels of LECT2, FGF21 and 

follistatin are modulated by adiposity and are associated with various anthropometric 

measurements and biomarkers of metabolic health. Additionally, our findings show that 

circulating levels of FGF21 and follistatin are transiently elevated after a single bout of 

moderate-intensity exercise, and these responses are preserved in overweight/obese individuals. 

These responses may help mediate the favourable metabolic impact of exercise, but further 

research is needed to assess causality. 

Previous reports have shown increased LECT2 in obese individuals, with or without non-

alcoholic fatty liver disease (NAFLD), in two large Japanese cohorts (Okumura et al., 2013; 

Lan et al., 2014). The current study is the first, however, to show that LECT2 is elevated in 

European men that are overweight/obese and correlates with BMI in a population of normal 

weight, overweight and obese individuals. In mice, hepatic expression and circulating 

concentrations of LECT2 are negatively regulated by hepatic AMPK (Lan et al., 2014). 

Furthermore, eight weeks of high-fat overfeeding increased circulating concentrations of 

LECT2, alongside increases in body mass (Lan et al., 2014). As such, circulating LECT2 may 

be increased in overweight and obese individuals due to chronic reduction of hepatic AMPK 

activity resulting from sustained energy surplus. In agreement with previous studies (Okumura 

et al., 2013; Lan et al., 2014), we show significant associations between LECT2 and fasted 

plasma insulin and HOMA-IR, whilst we also report, for the first time, significant correlations 

between fasted concentrations of LECT2, NEFA and Adipo-IR. LECT2 has been shown to 

inhibit insulin signalling in C2C12 myotubes via activation of cJNK (Lan et al., 2014) but its 

effects on other peripheral tissues, including hepatic and adipose tissues, warrant further 

investigation.  

Previous reports have shown that fasted concentrations of FGF21 are elevated in obese 

individuals with normal or dysregulated glucose metabolism (Zhang et al., 2008; Chen et al., 

2011). Our findings are in agreement with these studies and show that FGF21 is also increased 

in individuals that are overweight/obese. Given the beneficial metabolic effects associated with 

FGF21, it may seem somewhat paradoxical that circulating concentrations are increased in 

individuals with overweight or obesity. However, it has been suggested that increased FGF21 
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may be part of an early adaptive response to chronic overnutrition, to aid subcutaneous adipose 

tissue expansion and thus attenuate lipid storage in ectopic sites (Li et al., 2018). This may 

explain why transient increases in circulating FGF21 to acute stimuli, such as exercise, may be 

apparent and considered beneficial, whilst concentrations are also elevated chronically in 

individuals with metabolic dysregulation. Hepatic expression and secretion of FGF21 is 

increased during periods of starvation via the activation of peroxisome proliferator-activated 

receptor alpha (PPAR-α) by circulating NEFA (Badman et al., 2007). However, plasma 

concentrations of NEFA are also increased with obesity (Boden, 2008), offering a potential 

mechanism to explain the increased FGF21 concentrations seen in the present and previous 

studies. In support of this, we report elevated fasted concentrations of NEFA in the 

overweight/obese group and a strong positive correlation between circulating concentrations 

of FGF21 and NEFA. Alternatively, a state of ‘FGF21 resistance’ may also result in elevated 

concentrations of FGF21 group (Potthoff, Kliewer and Mangelsdorf, 2012) but it was beyond 

the scope of this study to investigate this hypothesis. 

Despite no statistically significant difference in the fasted state, we showed lower 

concentrations of follistatin in the overweight/obese group throughout trial days. Our findings 

are consistent with previous data which identified lower follistatin levels in obese individuals 

with T2DM (Ueland et al., 2012), yet contrast those of Hansen et al. (Hansen et al., 2013) who 

identified higher follistatin in T2DM patients. The reasons for these discrepancies are not clear 

at this time and further work is therefore needed to more fully understand the metabolism of 

follistatin in health and disease.   

We report no differences between groups in concentrations of fetuin-A or SeP either in the 

fasted state or throughout trial days. This may suggest that the development of metabolic 

complications, and not adiposity per se, may be required to disrupt fetuin-A and SeP 

metabolism. Previous research has found no independent effect of obesity on fetuin-A 

concentrations (Obuchi et al., 2014), whilst studies reporting differences in SeP have recruited 

individuals with NAFLD or dysregulated glucose metabolism (Yang, Hwang, et al., 2011; H. 

Y. Choi et al., 2013).  

In the current study we demonstrate that circulating concentrations of FGF21 are increased 

immediately after an acute 60-min bout of moderate-intensity aerobic exercise, peaking 30 min 

after the cessation of exercise, and remaining elevated for up to 3 h. A similar, albeit delayed, 

increase in circulating follistatin also occurred. These findings support previous studies 
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showing that FGF21 and follistatin are increased with acute aerobic exercise (Slusher et al., 

2015; Hansen, Pedersen, et al., 2016; Hansen, Rutti, et al., 2016). FGF21 and follistatin 

production are positively regulated by the glucagon to insulin ratio (Hansen, Pedersen, et al., 

2016; Hansen, Rutti, et al., 2016), whilst FGF21 may also be increased via activation of PPAR-

α by circulating NEFA (K. H. Kim et al., 2013; Hansen, Pedersen, et al., 2016). The systemic 

glucagon to insulin ratio and circulating NEFA were both elevated in response to exercise in 

the present study. FGF21 improves glucose metabolism in skeletal muscle, adipose tissue and 

the liver, whilst follistatin may promote pancreatic beta cell survival, reduce circulating 

glucagon and preserve skeletal muscle mass (Camporez et al., 2013; Hansen, Rutti, et al., 2016). 

Transient increases in the circulating levels of these hepatokines may represent potential 

mechanisms which contribute to the short-term improvements in glycaemic control after acute 

exercise (Sylow et al., 2017) and, if occurring regularly with repeated bouts (i.e. training), the 

longer-term metabolic benefits associated with regular exercise. Notably, in Wistar rats 

undergoing a period of HFOF, FGF21 knockout abolished the beneficial effects of exercise 

training on hepatic steatosis and glucose tolerance (Loyd et al., 2016). 

In the current study the responses of circulating FGF21 and follistatin to exercise were similar 

in both normal weight and overweight/obese participants. It has been previously shown that 

the FGF21 and follistatin responses to acute exercise are blunted in individuals with T2DM, 

and this may be the result of differences in the exercise-induced changes in circulating NEFA 

and the glucagon to insulin ratio (Hansen, Pedersen, et al., 2016). Furthermore, the response 

of FGF21 to 30 min of exercise at 75% V̇O2 peak has been shown to be reduced in obese 

individuals compared with healthy, normal weight controls (Slusher et al., 2015). Notably, 

although the participants in the study by Slusher and colleagues (Slusher et al., 2015) were 

reportedly healthy, the obese group had a mean HOMA-IR of 4.36, which approaches the 5.13 

threshold previously used to distinguish insulin resistant individuals (Wildman et al., 2008). 

The participants in the current study were free from chronic disease and fasted plasma glucose, 

insulin and HOMA-IR suggested they were not insulin resistant. It could, therefore, be 

speculated that exercise-induced increases in circulating FGF21 and follistatin are maintained 

in overweight/obese individuals with preserved glycaemic control but not once a degree of 

insulin resistance has developed. Notably, the exercise-induced changes in NEFA and the 

glucagon to insulin ratio were no different between groups in the current study. This speculative 

hypothesis, however, should be tested further. 
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The current study is the first to investigate the acute effects of aerobic exercise on fetuin-A, 

LECT2 and SeP, but these hepatokines were unaffected by exercise. Fetuin-A, LECT2 and SeP 

are all negatively regulated by hepatic AMPK (Jung, Choi, et al., 2013; Lan et al., 2014; 

Trepanowski, Mey and Varady, 2014) which is activated by exercise in an intensity-dependent 

manner (Camacho et al., 2006). It may be that higher intensity exercise is required to acutely 

modulate fetuin-A, LECT2 or SeP (Trepanowski, Mey and Varady, 2014), or that repeated 

bouts of exercise are required to elicit benefits; as shown previously for fetuin-A (Malin, Mulya, 

et al., 2013; Malin et al., 2014). 

This study is not without limitation. Most prominently, this trial was conducted using a 

relatively small sample of normal weight and overweight/obese men. Given the lack of prior 

evidence we were unable to determine a priori whether our sample size was sufficient for all 

of our outcomes. The novel data presented in this manuscript may, however, be utilised to 

inform power calculations for future studies, particularly those investigating the effects of acute 

exercise on LECT2, SeP and fetuin-A. Our results also cannot be generalised to individuals 

with chronic metabolic disease or women. Notably, we did not directly measure intrahepatic 

fat or insulin sensitivity in the current study. These are important considerations because the 

development of metabolic disease may influence hepatokine metabolism. Furthermore, the 

heightened propensity for fatty liver development in men, and the potential metabolic influence 

of sex hormones, underscores the necessity for additional research to be undertaken in women. 

It should also be noted that all analyses in this study were conducted using plasma isolated 

from systemic venous blood. Collection of systemic blood has been previously shown to be 

suitable to assess changes in FGF21 and follistatin after acute exercise (Hansen et al., 2011; 

Hansen, Pedersen, et al., 2016). However, the potential for changes in other circulating 

hepatokines (fetuin-A, LECT2 and SeP) to have been missed due to the location or timing of 

blood sampling cannot be dismissed. Isolation of the splanchnic circulation and the 

measurement of relevant protein expression in tissues of interest (e.g. hepatic, skeletal muscle 

and/or adipose tissues) would have been valuable and are necessary to explore this area further 

in future studies.   

In conclusion, this study has identified higher circulating concentrations of FGF21 and LECT2, 

and lower follistatin, in overweight/obese men when compared to normal weight individuals. 

Moreover, circulating FGF21 and follistatin are acutely increased after moderate-intensity 

aerobic exercise, and this beneficial shift in hepatokine profile is similar in both groups. Whilst 

each of these circulating proteins have been shown to exert beneficial effects of relevance to 
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metabolic health, the clinical impact of the changes seen with acute exercise in this study is not 

currently known. These data provide new information regarding the effect of adiposity on the 

metabolism of several novel hepatokines and supports evidence for a potential role of FGF21 

and follistatin in the metabolic benefits associated with exercise (both to a single bout and with 

regular training). However, additional work is needed to better understand the interaction 

between these novel proteins, obesity and chronic disease; as well as to better define their 

interaction with exercise and other metabolic perturbations. Studies exploring the clinical 

benefit of recurring changes in circulating hepatokines with regular exercise are also required.
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CHAPTER 5 
 

THE EFFECTS OF ACUTE MODERATE-INTENSITY 
CONTINUOUS EXERCISE OR LOW-VOLUME HIGH-
INTENSITY INTERVAL TRAINING ON CIRCULATING 

HEPATOKINE PROFILES IN INDIVIDUALS WITH 
IMPAIRED GLUCOSE REGULATION
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5.1  Abstract 

Background: Hepatokines represent a novel mechanism which may mediate the relationship 

between elevated IHTG and insulin resistance in peripheral tissues. This study presents 

preliminary findings exploring the effects of acute low-volume high-intensity interval training 

(LV-HIIT) or continuous moderate-intensity aerobic exercise (CME) on circulating 

concentrations of three hepatokines in overweight or obese individuals with impaired 

glycaemic control. 

Methods: Six men and six women (median (IQR) or mean ± SD; Age: 69 (67 – 70) years; BMI: 

28.8 (28.4 – 31.8) kg·m-2; HbA1c: 5.9 ± 0.2 %) performed three experimental trials (control, 

CME or LV-HIIT), each lasting 6 h, in a randomised, counterbalanced order. Participants 

performed LV-HIIT (25 min) or CME (35 min) during the respective exercise trials, both of 

which concluded at 2 h, and rested thereafter. Participants rested throughout control trials. 

Venous blood samples were collected at 0, 1, 2, 3, 4 and 6 h for the measurement of FGF21, 

follistatin, fetuin-A, insulin and NEFA. 

Results: Circulating follistatin concentrations were greater in the CME trial at 4 h and 6 h, 

compared to both LV-HIIT and control trials (P ≤ 0.03). However, there were no differences 

in circulating follistatin between LV-HIIT and control (all post hoc comparisons: P ≥ 0.15), 

whilst circulating FGF21 and fetuin-A concentrations were similar across the three trials days 

(time by trial interaction: P ≥ 0.14). 

Conclusions: These results suggest that, in individuals with impaired glycaemic control, a 

single bout of CME, but not LV-HIIT, increases circulating concentrations of follistatin, which 

may contribute to the improved glucose regulation associated with acute and chronic exercise. 

Conversely, FGF21 and fetuin-A are seemingly unaffected by either CME or LV-HIIT in 

dysglycaemic individuals. However, additional work is required to explore these preliminary 

findings further. 
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5.2  Introduction 

Elevated IHTG is the hallmark feature of NAFLD (Marchesini et al., 2016; Chalasani et al., 

2018) and is heavily implicated in the pathogenesis of T2DM (Taylor, 2008; Balkau et al., 

2010; Armstrong et al., 2014; Mantovani et al., 2018). IHTG correlates with insulin resistance 

not only in the liver but also in skeletal muscle and adipose tissues (Korenblat et al., 2008; Bril, 

Barb, et al., 2017). The mechanisms underlying these relationships between IHTG and 

peripheral tissues are not fully understood but liver-secreted ‘hepatokines’ may play a part in 

mediating inter-organ crosstalk (Stefan and Häring, 2013; Takamura, Misu and Kaneko, 2016; 

Meex and Watt, 2017).  

The accumulation of IHTG modulates the secretion of many hepatokines, including FGF21, 

follistatin and fetuin-A (Meex et al., 2015), each of which have been implicated in the 

regulation of glucose homeostasis by exerting endocrine effects in skeletal muscle, adipose 

tissue or the pancreas (Camporez et al., 2013; Malin, Mulya, et al., 2013; Stefan and Häring, 

2013; Hansen, Rutti, et al., 2016). Circulating concentrations of FGF21, follistatin and fetuin-

A are also higher in patients with T2DM compared to non-diabetic individuals, and correlate 

with markers of glycaemic control (Chavez et al., 2009; Ishibashi et al., 2010; Chen et al., 

2011; Hansen et al., 2013; Stefan et al., 2014). Furthermore, circulating hepatokine 

concentrations are altered by acute exercise (Hansen et al., 2011; K. H. Kim et al., 2013; 

Slusher et al., 2015; Hansen, Pedersen, et al., 2016; Hansen, Rutti, et al., 2016; Sargeant, Aithal, 

et al., 2018), leading to suggestions that they may be implicated in the metabolic benefits of 

regular exercise (Slusher et al., 2015). 

The study presented in Chapter 4 of this thesis demonstrated that circulating concentrations of 

FGF21 and follistatin are transiently elevated after a single bout of CME in lean and 

overweight/obese men (Sargeant, Aithal, et al., 2018), supporting previous research in 

individuals free from chronic metabolic disease (Hansen et al., 2011; K. H. Kim et al., 2013; 

Slusher et al., 2015; Hansen, Pedersen, et al., 2016; Hansen, Rutti, et al., 2016). However, it 

has been suggested that these responses may be blunted or even abolished in individuals with 

impaired glycaemic control or T2DM (Slusher et al., 2015; Hansen, Pedersen, et al., 2016). 

The study in Chapter 4 was also the first to investigate whether circulating concentrations of 

fetuin-A are modulated by acute exercise. However, despite evidence that circulating fetuin-A 

may be reduced by exercise training, (which was associated with improved insulin sensitivity) 

(Malin, Mulya, et al., 2013; Malin et al., 2014), a single bout of CME had no effect (Sargeant, 
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Aithal, et al., 2018). It is possible that the lack of response in fetuin-A may have been due to 

the fact that the population recruited were free from chronic disease and had normal glycaemic 

control. Accordingly, there were no differences in fasted fetuin-A concentrations between lean 

and overweight/obese groups (Sargeant, Aithal, et al., 2018). No study has explored the effects 

of acute exercise on circulating fetuin-A in individuals with impaired glucose regulation. 

In healthy individuals, the magnitude of increase in circulating FGF21 immediately after a 

single bout of exercise is dependent upon the intensity of the exercise performed (K. H. Kim 

et al., 2013). Similarly, fetuin-A expression is negatively regulated by hepatic AMPK activity 

(Jung, Youn, et al., 2013; Trepanowski, Mey and Varady, 2014), which itself may be activated 

in an intensity-dependent manner (Camacho et al., 2006). It has also been suggested that the 

circulating follistatin response to acute exercise may be regulated by exercise intensity (Hansen 

et al., 2011) but, at present, data from adequately controlled experimental studies are not 

available. Sustained, continuous high-intensity exercise may not be feasible for individuals 

with or at risk of chronic metabolic disease. However, LV-HIIT has been proposed as a 

practical exercise protocol allowing such populations to complete exercise of near-to-maximal 

intensity (Little et al., 2010, 2011). Whilst evidence remains limited, LV-HIIT has been 

suggested to improve markers of glycaemic control in overweight individuals with or without 

T2DM (Hood et al., 2011; Little et al., 2011, 2014; Gillen et al., 2012). However, the effects 

of LV-HIIT on circulating hepatokines have not been explored.  

This chapter presents preliminary analyses from an ongoing clinical trial (ISRCTN12337078) 

that explores the effects of a single bout of LV-HIIT or CME, on circulating hepatokines 

(FGF21, follistatin and fetuin-A) in individuals with impaired glycaemic control. It was 

hypothesised that, LV-HIIT would transiently increase plasma concentrations of FGF21 and 

follistatin and reduce circulating fetuin-A. Responses to CME would be of a lower magnitude 

or absent. 
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5.3  Materials and Methods 

5.3.1 Ethical approval and participant recruitment 

After receiving approval from the East Midlands NHS Research Ethics Committee (15-EM-

0259), 12 white European individuals (six men and six women) were recruited, giving written 

informed consent to participate (see Section 3.1). These participants represent half of the total 

sample that will be recruited to this study as recruitment of a south Asian group remains in 

progress. For consistency within this thesis, south Asian individuals recruited to date were not 

included in these preliminary analyses; all participants in Chapters 4 and 6 were of white 

European ethnicity.  

Participants were aged 50 to 74 years with a BMI > 27.5 kg·m-2. Participants were weight-

stable (defined as < 5 kg change in body weight in the previous six months) and free from overt 

chronic metabolic disease but had impaired glycaemic control as indicated by HbA1c between 

5.7 and 6.5 %. Participants that performed regular purposeful activity (≥ three or more sessions 

of vigorous-intensity exercise per week; ≥ 20 min per session) were excluded, as were those 

taking glucose-lowering medications or steroids. 

5.3.2 Preliminary visit 

Participants visited the Leicester Diabetes Centre having abstained from alcohol and strenuous 

exercise for 48 and 72 h, respectively. Height, weight, WC and BF% were measured as outlined 

in General Methods (see Section 3.3). Medical history was reviewed by a specialist cardiac 

nurse and a resting ECG was performed (Cardiofax GEM ECG, Nihon Nohden Corp., Tokyo, 

Japan). In the absence of established resting cardiac arrhythmias or other contraindications to 

participation in the study, participants completed a maximal exercise test to determine V̇O2  

peak, as outlined in General Methods (see Sections 3.6 to 3.8). ECG was monitored throughout 

and the test was aborted upon occurrence of any unexpected adverse events. 

After approximately 15 min (or until participants had sufficiently recovered), participants were 

familiarised with the LV-HIIT protocol used during experimental trials. LV-HIIT was 

performed as outlined in Table 5.1, except that only three intervals were completed. The 

preliminary visit concluded with a venous blood sample for the measurement of total 

cholesterol, HDL and HbA1c. 
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5.3.3 Experimental trials 

Participants completed three experimental trials (control, CME and LV-HIIT) in a randomised, 

counterbalanced order. Each trial was separated by approximately one week and, prior to each 

trial, participants refrained from strenuous activity and alcohol for 72 h and 48 h, respectively. 

Participants also recorded dietary intake, using weighed food records, for 48 h before their first 

trial day and were asked to replicate this prior to subsequent trials. They were instructed to 

consume all food and energy-containing beverages before 22:00 on the evening before 

experimental trials, after which only water was permitted. 

Participants arrived at the laboratory for experimental trials at approximately 08:00. Motorised 

transport was arranged and ambulatory activity was minimised throughout trial days. After 

ensuring compliance with standardisation instructions, experimental procedures were 

reiterated and willingness to continue was confirmed. An intravenous cannula (20/22G, Braun, 

Pennine Healthcare, Derby, UK) was inserted into an antecubital vein and, after a period of 

habituation (30 – 45 min), trials were initiated with the collection of a venous blood sample (0 

h). Further blood samples were drawn at 1, 2, 3, 4 and 6 h (Figure 5.1). Circulating FGF21, 

follistatin, fetuin-A, insulin and NEFA were measured at each timepoint. Standardised meals 

(8 kcal·kg-1; 51 % CHO, 35 % fat, 14 % protein) were provided at 0 and 3 h, and were consumed 

within 15 min. 

 

5 A 0 1 2 3 4 6 
Time (hours) 

\\ 

Figure 5.1 Schematic representation of experimental trial days 

   25 min LV-HIIT performed (LV-HIIT trials only) 

   35 min of continuous moderate-intensity aerobic exercise performed (CME trials only) 

   Standardised meal consumed  

   Participant arrival (approximately 60 min prior to first blood sample) 

   Venous cannula inserted (approximately 30 - 45 min prior to first blood sample) 

   Venous blood sample collected 

 

A 
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During exercise trials, participants performed a single bout of either CME or LV-HIIT. Each 

were performed on a motorised treadmill (Excite Med Technogym, Italy) and finished at 2 h. 

Therefore, to account for differences in exercise duration (35 vs. 25 min), the CME protocol 

commenced earlier than the LV-HIIT (Figure 5.1). Details of each exercise protocol, which are 

suggested to be closely matched for external work (Little et al., 2014), can be found in Table 

5.1. During exercise, HR and RPE (Borg, 1970) were recorded at regular intervals.  

 

Table 5.1 Details of exercise protocols employed in experimental trials 

 Continuous moderate-
intensity exercise 

Low-volume HIIT 

Total duration 35 min 25 min 

Warm-up 3.5 km·h-1 at 0% gradient (3 min) 

Exercise protocol Duration: 30 min 
 
Speed: Identical to that used in 

maximal exercise testing 
 
Gradient: That predicted to 

elicit 65 % of V̇O2 
peak. 

Duration: 20 min (10 x 60-s 
intervals, 10 x 60-s 
active recovery). 

 
Speed:  
Intervals: Identical to that used 

in maximal exercise 
testing. 

Recovery: 3.5 km·h-1 

 
Gradient: 
Intervals: 90 % of peak gradient 

achieved in maximal 
exercise testing. 

Recovery: 0 %. 

Cool-down 3.5 km·h-1 at 0% gradient (2 min) 
 

5.3.4 Biochemical analyses 

All biochemical analyses were conducted as outlined in General Methods (see Sections 3.11 

and 3.12). Briefly, plasma was isolated at each timepoint of experimental trials and stored at -

80 oC (see Section 3.11) for subsequent batch analysis of FGF21, fetuin-A, follistatin and 

insulin using commercially-available ELISA (see Section 3.12) (all CV ≤ 5.0%). Glucose, TG, 

total cholesterol, HDL and HbA1c were requested from the pathology laboratories of 

University Hospitals of Leicester NHS Trust, whilst NEFA analyses were conducted within 
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specialist laboratories at Nottingham University Hospitals NHS Trust. One participant was 

excluded from NEFA analysis as data were unavailable for an entire trial. Haemoglobin and 

haematocrit were also requested but missing data meant that plasma volume could only be 

calculated for 64% of all timepoints. Furthermore, complete data for all three experimental 

trials were only available for two participants. Therefore, no adjustments for plasma volume 

were made.  

5.3.5 Statistical analyses 

Data were analysed using an approach that was consistent with that of Chapter 4. Briefly, two-

way, repeated measures ANOVA (within-participant factors: trial and sample time) were used 

to assess hepatokine responses to exercise. Significant trial by time interactions were followed 

up post-hoc with paired samples t-tests between the three different trials at each sample time. 

Given the small sample size of this study, P-values were not corrected for multiple comparisons. 

Total AUC was also calculated for each hepatokine throughout each trial day (see Section 3.15) 

and differences between trials were investigated using one-way repeated measures ANOVA or 

Friedman’s test when the data were normally- or not normally-distributed, respectively. 

Significant main effects were followed up with paired samples t-tests or Wilcoxon matched 

pairs tests, as appropriate. 
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5.4  Results 

5.4.1 Participant and exercise characteristics 

Details of participant characteristics can be found in Table 5.2. As per study eligibility criteria, 

participants were older adults with overweight or obesity and with HbA1c indicative of 

impaired glycaemic control. Four of the twelve individuals also met diagnostic criteria for 

impaired fasting glucose (> 5.7 mmol·L-1) (American Diabetes Association, 2018). There were 

no differences in HR or RPE between the CME (mean ± SD; HR: 114 ± 17 beats·min-1, RPE: 

12 ± 2) or LV-HIIT (HR: 119 ± 12 beats·min-1, RPE: 13 ± 2) exercise (both P ≥ 0.27). 

Table 5.2 Participant characteristics 

Anthropometry    
Age (years) 69 (67 – 71) 
Body weight (kg) 82.1 ± 9.0 
BMI (kg·m-2) 28.8 (28.4 – 32.5) 
Waist circumference (cm) 101.7 ± 6.4 
Body fat (%) 35.7 ± 6.0 

Glycaemic Control and Insulin Sensitivity     
HbA1c (%) 5.9 ± 0.2 
Fasted plasma glucose (mmol·L-1) 5.4 ± 0.5 
Fasted plasma insulin (pmol·L-1) 72.1 ± 28.3 
HOMA-IR 2.9 ± 1.2 
Fasted plasma NEFA (mmol·L-1) 0.52 ± 0.16 
Adipo-IR 35.2 ± 12.5 

Other Metabolic Risk Factors    
Systolic blood pressure (mmHg) 135 ± 10 
Diastolic blood pressure (mmHg) 81 ± 6 
Total Cholesterol (mmol·L-1)* 5.2 ± 0.9 
HDL (mmol·L-1)* 1.6 ± 0.4 
LDL (mmol·L-1)* 2.6 (2.4 – 2.9) 
Fasted plasma TG (mmol·L-1) 1.36 (1.19 – 2.31) 

Cardiorespiratory Fitness    
Absolute V̇Ȯ2 peak (L·min-1) 2.19 ± 0.50 
Relative V̇Ȯ2 peak (mL·kg-1·min-1) 26.5 ± 4.6 

Fasted Hepatokines    
FGF21 (pg·mL-1) 143 (133 – 386) 
Fetuin-A (µg·mL-1) 682 ± 141 
Follistatin (pg·mL-1) 2077 ± 480 

Data presented as arithmetic mean ± SD or median (IQR). * n = 11.  
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5.4.2 Circulating hepatokines responses to exercise  

FGF21 concentrations were similar between trials (P = 0.79) and there was no interaction 

between trial and time (P = 0.23; Figure 5.2a). Similarly, there were no differences in the total 

AUC between trials (Figure 5.2b).  

The mean circulating follistatin concentrations were also similar between trials (P = 0.10), but 

there was a significant interaction between trial and time (P = 0.004; Figure 5.2c). Post-hoc 

tests revealed that, whilst there were no differences between control and LV-HIIT trials (all P 

≥ 0.15), circulating follistatin concentrations were significantly higher at 4 h (P ≤ 0.03) and 6 

h (P ≤ 0.002) in the CME trial. There was a significant main effect of trial when data were 

analysed as total AUC (P = 0.05; Figure 5.2d) and post-hoc tests revealed a significantly higher 

total AUC in the CME trial compared to the LV-HIIT trial (P = 0.03). The difference in total 

AUC between the CME and control trials approached statistical significance (P = 0.08). 

Circulating concentrations of fetuin-A were similar between trials (P = 0.67) and there was no 

interaction between trial and time (P = 0.14; Figure 5.2e). Total AUC was similar between 

trials (P = 0.50; Figure 5.2f). 

5.4.3 Circulating responses of NEFA and insulin to exercise 

The mean circulating concentrations of NEFA were similar between trials (P = 0.13) but there 

was a significant interaction between trial and time (P = 0.02; Figure 5.3a). Post-hoc tests 

revealed that circulating concentrations were higher in the CME trial compared to the control 

trial at 2 h (P = 0.02) and 3 h (P = 0.02), and higher than the LV-HIIT trial at 1h (P < 0.01) and 

2 h (P < 0.001). The total AUC was similar between trials (P = 0.23; Figure 5.3b). 

The interaction between trial and time for circulating concentrations of insulin approached 

statistical significance (P = 0.08; Figure 5.3c) and there was a main effect of trial when data 

were analysed either using raw concentrations (P = 0.045) or as total AUC (P = 0.02). Post-

hoc tests using AUC data suggested that the total AUC during the LV-HIIT trial was lower 

than that of both the control and CME trials (P < 0.01 and P = 0.03, respectively; Figure 5.3d).  
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Figure 5.2 Circulating hepatokine response during control, CME and LV-HIIT trials. 

Circulating plasma concentrations of FGF21 (a-b), follistatin (c-d) and fetuin-A (e-f) during 

control, CME and LV-HIIT trials. Meals were provided at 0 and 3 h. During CME and LV-

HIIT trials, participants performed 35 min of CME or 25 min of LV-HIIT, respectively. 

Exercise was co-ordinated such that each exercise bout finished at 2 h. Data presented as mean 

± SEM unless otherwise stated. # indicates data were not normally distributed and thus 

presented as median with IQR. AUC represents the total area under the concentration-time 

curve for the given experimental day. * indicates significant difference between CME and 

control trials (all P ≤ 0.03). ‡ indicates significant difference between CME and LV-HIIT trials 

(all P ≤ 0.01). 
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Figure 5.3 Circulating NEFA (a-b) and insulin (c-d) responses during control, CME and 

LV-HIIT trials. Data for NEFA analysis are n = 11. Meals were provided at 0 and 3 h. During 

CME and LV-HIIT trials, participants performed 35 min of CME or 25 min of LV-HIIT, 

respectively. Exercise was co-ordinated such that each exercise bout finished at 2 h. Data 

presented as mean ± SEM unless otherwise stated. # indicates data were not normally 

distributed and thus presented as median with IQR. AUC represents the total area under the 

concentration-time curve for the given experimental day. * indicates significant difference 

between CME and control trials (all P ≤ 0.02). ‡ indicates significant difference between CME 

and LV-HIIT trials (all P ≤ 0.02). † indicates significant difference between LV-HIIT and 

control trials (P = 0.02). 
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5.5  Discussion 

This chapter presents preliminary findings exploring the acute effects of CME or LV-HIIT on 

circulating concentrations of FGF21, follistatin and fetuin-A in individuals with overweight or 

obesity and impaired glycaemic control. These data suggest that circulating follistatin is 

increased 2 h after the cessation of CME and remains elevated for a minimum of 4 h post-

exercise. Conversely, a single bout of LV-HIIT appears to have no effect on circulating 

follistatin, whilst FGF21 and fetuin-A are unaffected by either exercise bout in this population. 

These results are consistent with previous research demonstrating a transient increase in 

circulating follistatin after a single bout of CME (Hansen et al., 2011; Hansen, Pedersen, et al., 

2016; Hansen, Rutti, et al., 2016; Sargeant, Aithal, et al., 2018). Notably, one of these studies 

also reported that this response is blunted in individuals with T2DM (Hansen, Pedersen, et al., 

2016). Whilst the reasons for this blunted response could not be determined conclusively, the 

authors speculated that it may be a result of hyperinsulinaemia in individuals with T2DM, 

leading to a smaller change in the circulating glucagon to insulin ratio during exercise (Hansen, 

Pedersen, et al., 2016). This ratio has previously been reported as an important mediator of the 

post-exercise response of circulating follistatin (Hansen, Pedersen, et al., 2016; Hansen, Rutti, 

et al., 2016). It is notable that in the dysglycaemic population recruited in this study, the mean 

fasted plasma insulin concentrations was approximately 2 to 2.5-fold greater than both the lean 

and overweight/obese normoglycaemic groups recruited in Chapter 4 (Sargeant, Aithal, et al., 

2018). However, comparisons between different populations are not possible at this time as the 

current study does not directly compare the magnitude of exercise-induced changes in 

circulating follistatin between individuals with different degrees of glycaemic control 

completing the same exercise protocol.  

Nonetheless, the data presented in this chapter do confirm the potential for acute exercise to 

modulate circulating follistatin concentrations in individuals with impaired glucose regulation. 

Follistatin promotes the synthesis of skeletal muscle, by inhibiting myostatin and activin 

(Gilson et al., 2009; Yaden et al., 2014), and increases pancreatic β-cell mass by promoting 

proliferation and reducing apoptosis (Zhao et al., 2015; Hansen, Rutti, et al., 2016). It may also 

reduce glucagon secretion from islet cells (Hansen, Rutti, et al., 2016). It is plausible, therefore, 

that regular transient elevations in follistatin after repeated bouts of exercise may play a part in 

the improvements in glycaemic control seen with exercise training. However, this hypothesis 

requires further investigation. 
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Previous reports have speculated that the response of circulating follistatin to acute exercise 

may be dependent on the intensity of exercise performed (Hansen et al., 2011). In the current 

analysis, however, LV-HIIT had no effect on circulating follistatin concentrations. Whilst 

contrary to the hypothesis of Hansen and colleagues, these results are consistent with a separate 

study recently conducted in our research group (Willis et al., 2018). This study demonstrated 

that, in healthy normal-weight individuals, the exercise-induced increase in circulating 

follistatin was no different after energy-matched bouts of aerobic exercise performed at either 

55% or 75% of V̇O2 peak (Willis et al., 2018). It is possible, therefore, that characteristics of 

acute exercise other than intensity may be more important in mediating the post-exercise 

increase in circulating follistatin. One such exercise characteristic may be exercise duration. In 

the study by Hansen and colleagues, the increase in circulating follistatin was greater after 3 h 

of moderate-intensity cycling than after 2 h of knee extensor exercise (Hansen et al., 2011). 

Similarly, in the current study the single bout of CME was approximately one-third longer than 

the LV-HIIT.  

An alternative explanation for the lack of change in circulating follistatin after LV-HIIT is that 

the LV-HIIT utilised in this study did not induce changes in the glucagon to insulin ratio 

sufficient to modulate hepatic follistatin secretion. As mentioned previously, the circulating 

follistatin response after acute exercise is regulated by changes in the glucagon to insulin ratio 

and when exercise is performed under the conditions of a pancreatic clamp (during which 

glucagon and insulin concentrations are fixed) the post-exercise increase in plasma follistatin 

is blunted (Hansen, Pedersen, et al., 2016; Hansen, Rutti, et al., 2016). Glucagon was not 

measured in the current analyses and, therefore, it cannot be determined at present whether the 

glucagon to insulin ratio differed between the CME and LV-HIIT trials.  It is noteworthy, 

however, that the mean circulating insulin concentration was lower during the LV-HIIT trial 

compared to the CME and control trials. This would, if anything, contribute to a greater 

glucagon to insulin ratio. Finally, the fact that the follistatin response to acute exercise is 

blunted but not abolished during pancreatic clamp suggests that additional mechanisms beyond 

the glucagon to insulin ratio may be responsible. Whilst, these alternative mechanisms are 

currently unclear it is possible that they may be differentially modulated by CME and LV-HIIT. 

In the current study, circulating concentrations of FGF21 were unaffected by CME in 

individuals with impaired glucose regulation but not overt T2DM. Furthermore, despite 

previous evidence that the post-exercise increase in circulating FGF21 may be intensity-

dependent in healthy individuals (K. H. Kim et al., 2013), a single bout of LV-HIIT in the 
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current study had no effect. These results are in accordance with previous research 

demonstrating that, compared to healthy normoglycaemic individuals, the increase in 

circulating FGF21 after exercise is blunted, or even abolished, in individuals with dysregulated 

glucose metabolism (Slusher et al., 2015; Hansen, Pedersen, et al., 2016). Notably, the 

individuals recruited by Slusher and colleagues were obese and had a baseline HOMA-IR that 

was indicative of insulin resistance, but were free from chronic metabolic disease (Wildman et 

al., 2008; Slusher et al., 2015); HbA1c was not assessed. Collectively, these results indicate 

that there may be a progressive decline in the FGF21 response to exercise as insulin resistance 

occurs and this may be fully suppressed before the development of overt T2DM. As such, 

changes in FGF21 may not be directly related to the acute improvement in insulin sensitivity 

seen after single bouts of exercise in individuals with dysglycaemia (Sylow et al., 2017). 

However, as mentioned previously when discussing the results for follistatin above, further 

studies directly comparing the response of FGF21 to identical bouts of acute exercise in 

matched groups of individuals with different degrees of insulin resistance are required to 

rigorously test this suggestion. 

The circulating FGF21 response to exercise is also regulated by the glucagon to insulin ratio 

(Hansen et al., 2015; Hansen, Pedersen, et al., 2016). However, unlike follistatin, this response 

is completely abolished when exercise is performed under conditions of the pancreatic clamp 

(Hansen, Pedersen, et al., 2016). It has been previously suggested that the blunted or abolished 

response of circulating FGF21 after acute exercise in individuals with impaired glycaemic 

control or overt T2DM may be due to elevated circulating insulin in these individuals leading 

to a lower change in the glucagon to insulin ratio with exercise (Hansen, Pedersen, et al., 2016). 

As mentioned previously, however, glucagon was not measured in the current study and, 

therefore, whilst fasted circulating insulin was greater in the current study population compared 

to the normoglycaemic individuals recruited in Chapter 4, potential differences in the glucagon 

to insulin ratio cannot be determined.  

The effects of acute exercise on circulating fetuin-A in individuals with impaired glucose 

regulation have not been explored previously. The preliminary findings presented in this 

chapter suggest that, in this population, plasma fetuin-A concentrations are unaffected by a 

single bout of either CME or LV-HIIT. These findings are similar to those previously reported 

in lean and overweight/obese individuals with normal glucose regulation, which also found no 

effect of acute CME on circulating fetuin-A (Sargeant, Aithal, et al., 2018; Chapter 4 of this 

thesis). It was hypothesised that the lack of fetuin-A response to acute exercise in individuals 
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free from chronic metabolic disease (Sargeant, Aithal, et al., 2018) may have been because 

fetuin-A concentrations were not elevated at baseline. In Chapter 4, there was no difference in 

circulating fetuin-A between the lean and overweight/obese normoglycaemic groups and this 

may have limited the potential for circulating fetuin-A to be reduced by acute exercise. 

Alternatively, fetuin-A expression is negatively regulated by hepatic AMPK (Jung, Youn, et 

al., 2013; Trepanowski, Mey and Varady, 2014) which, in rodents, is activated in a stepwise 

manner with exercise intensity (Camacho et al., 2006). Therefore, it may have been that the 

intensity of CME utilised in Chapter 4 was insufficient to modulate circulating fetuin-A. 

However, despite the mean fasted fetuin-A concentration in the current study being 26% to 37% 

higher than the groups recruited in Chapter 4 and a bout of high-intensity exercise being 

performed in the form of LV-HIIT, there was no effect of either CME or LV-HIIT on 

circulating fetuin-A. Therefore, the results of the current study in combination with those of 

Chapter 4 (Sargeant, Aithal, et al., 2018) suggest that, in humans, fetuin-A may not be sensitive 

to acute perturbations in metabolism, such as that caused by a single bout CME or LV-HIIT. 

Instead, it may be that more regular bouts of energy imbalance, such as those that occur with 

structured training, or prolonged energy deficit and weight loss may be required to elicit 

sustained reductions in circulating fetuin-A (Blüher et al., 2012; Malin, Mulya, et al., 2013; 

Malin et al., 2014). 

This study is the first to investigate the effects of a single bout of LV-HIIT or CME on 

circulating hepatokines in overweight/obese individuals with impaired glycaemic control but 

not overt T2DM. However, some important limitations should be considered. Most notably, 

this chapter presents preliminary analyses of an ongoing trial, with the current sample size 

constituting half of the final study population. As such, the current sample size may be 

insufficient to detect physiologically meaningful changes in some of the outcomes reported 

and null-findings may be the result of a lack of statistical power. Notably, based on the data 

contained in this chapter, where the largest standardised difference between trials for total AUC 

of FGF21 (between CON and CME) and fetuin-A (between CON and LV-HIIT) were -0.18 

and -0.20, respectively, and where the within-participant correlation was approximately 0.90 

for each, the current sample size (n = 12) only had 27.5% and 20.8% power to detect a 

significant main effect of trial, with an alpha error rate of 0.05. In turn, retrospective sample 

size calculations determined that 46 and 67 participants would be required to detect a 

significant main effect of trial for FGF21 and fetuin-A, respectively. Furthermore, additional 

research examining the impact of transient exercise-induced changes in FGF21 and fetuin-A 
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in clinical populations is required to determine what magnitude of difference in these 

hepatokines could be considered clinically meaningful. Accordingly, it is important to note that 

the potential explanations provided for the results of this chapter remain speculative and require 

rigorous investigation. Secondly, participants performed exercise approximately 60-90 min 

after consuming a breakfast meal. Whilst the content and timing of meals were standardised 

between conditions, and thus controlled within the context of this study, direct comparisons 

with previous studies (in which exercise was performed in the fasted state) should be made 

with caution. Finally, the CME and LV-HIIT protocols utilised in this study are suggested to 

be approximately matched for total external work (Little et al., 2014) and the mean HR and 

RPE during exercise was similar between trials. However, energy expenditure was not assessed 

directly (using indirect calorimetry, for example, as it was in Chapter 4) and therefore the 

possibility that differences in responses between CME and LV-HIIT may be due to differences 

in energy expenditure cannot be dismissed. Furthermore, it may be possible that the exercise 

protocols used in this chapter were insufficient to elicit changes in circulating hepatokines and 

that greater energy expenditure may be required to modulate circulating concentrations in this 

population. Further studies that rigorously examine the impact of exercise protocols differing 

in energy expenditure are required to test this hypothesis, and explore whether a minimum 

threshold of energy expenditure required to elicit changes in circulating hepatokines exists.  

In conclusion, this study demonstrates that circulating follistatin is transiently increased by a 

single bout of CME in individuals with overweight or obesity and impaired glycaemic control, 

which may contribute to the improved glucose regulation associated with regular exercise. 

Conversely, the data presented suggest that the increase in FGF21 previously reported after 

CME in a healthy (normoglycaemic) population is not apparent in individuals with glycaemic 

dysregulation. A single bout of LV-HIIT had no effect on follistatin or FGF21, whilst 

circulating concentrations of fetuin-A were unaffected by either exercise protocol. However, 

these analyses are preliminary in nature and additional work is required to explore these 

findings further. 
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CHAPTER 6 

  
EFFECTS OF SPRINT INTERVAL TRAINING ON 

ECTOPIC LIPIDS AND TISSUE-SPECIFIC INSULIN 
SENSITIVITY IN MEN WITH NON-ALCOHOLIC FATTY 

LIVER DISEASE 
 

 

 

 

 

 

 

 

The study presented in this chapter has been published and has the following citation: 

Sargeant JA, Bawden S, Aithal GP et al. (2018). European Journal of Applied Physiology. 

118(4): 817-828. 

This chapter presents the published manuscript but with some aspects of the methods section 

condensed or removed to avoid repetition within this thesis. When this occurs, readers are 

directed to the appropriate sections of the General Methods for more information. Conversely, 

further details of the participant recruitment process and hepatokines analyses, which were not 

submitted for publication, have been added to the results section of this chapter. 
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6.1  Abstract 

Purpose: This study examined the feasibility of sprint interval exercise training (SIT) for men 

with non-alcoholic fatty liver disease (NAFLD) and its effects on intrahepatic triglyceride 

(IHTG), insulin sensitivity (hepatic and peripheral), visceral (VAT) and subcutaneous adipose 

tissue (ScAT). 

Methods: Nine men with NAFLD (age 41±8 years; BMI 31.7±3.1 kg·m-2; IHTG 15.6±8.3%) 

were assessed at: 1) baseline 2) after a control phase of no intervention (pre-training) and 3) 

after six weeks of SIT (4-6 maximal 30 s cycling intervals, three times per week). IHTG, VAT 

and ScAT were measured using magnetic resonance spectroscopy or imaging and insulin 

sensitivity was assessed via dual-step hyperinsulinaemic-euglycaemic clamp with [6,6-D2] 

glucose tracer.  

Results: Participants adhered to SIT, completing ≥96.7% of prescribed intervals. SIT increased 

peak oxygen uptake (V̇O2 peak: +13.6% [95% CI: 8.8 to 18.2%]) and elicited a relative 

reduction in IHTG (-12.4% [-31.6 to 6.7%]) and VAT (-16.9% [-24.4 to -9.4%]; n=8), with no 

change in body weight or ScAT. Peripheral insulin sensitivity increased throughout the study 

(n=8; significant main effect of phase) but changes from pre- to post-training were highly 

variable (range: -18.5 to +58.7%) and not significant (P=0.09), despite a moderate effect size 

(g*=0.63). Hepatic insulin sensitivity was not influenced by SIT. 

Conclusions: SIT is feasible for men with NAFLD in a controlled laboratory setting and is able 

to reduce IHTG and VAT in the absence of weight loss.  
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6.2  Introduction 

Non-alcoholic fatty liver disease (NAFLD) is a common complication of obesity that is 

integrated in the pathogenesis of extra-hepatic co-morbidities such as type 2 diabetes (T2DM) 

and cardiovascular disease (Byrne and Targher, 2015). Insulin resistance is a central 

pathophysiological feature of NAFLD with associations between intrahepatic triglyceride 

content (IHTG) and insulin action in skeletal muscle, adipose tissue and the liver (Bril, Barb, 

et al., 2017). The prominence of these metabolic defects within the development and 

progression of NAFLD makes them priority targets for intervention.  

Lifestyle interventions, incorporating diet and physical activity, remain the cornerstone of 

treatment for NAFLD (Marchesini et al., 2016) and the importance of structured exercise 

within such interventions is underscored by both hepatic and extra-hepatic benefits. Continuous 

moderate-to-vigorous intensity exercise interventions increase cardiorespiratory fitness, reduce 

adiposity, improve peripheral insulin sensitivity, enhance cardiovascular function and improve 

circulating markers of metabolic health (Pugh et al., 2014; Hallsworth et al., 2015; Keating et 

al., 2015; Cuthbertson et al., 2016; Zhang et al., 2016). 

Guidelines for the management of NAFLD suggest that individuals undertake 150-200 min of 

moderate-intensity aerobic or resistance exercise each week, spread over three to five sessions 

(Marchesini et al., 2016). Observational evidence (Kistler et al., 2011) and experimental data 

(Cho et al., 2015; Oh et al., 2017) suggest that high-intensity exercise may be more potent in 

attenuating IHTG accumulation and NAFLD progression than moderate-intensity exercise. 

This evidence is consistent with exercise intensity-dependent improvements in wider 

cardiometabolic outcomes, including indices of insulin sensitivity (Tjønna et al., 2008; Weston, 

Wisløff and Coombes, 2014). Moderate-intensity exercise improves peripheral insulin 

sensitivity in patients with NAFLD (Cuthbertson et al., 2016) but evidence of its impact on 

hepatic insulin sensitivity is unclear (Shojaee-Moradie et al., 2007; Cuthbertson et al., 2016). 

The effects of high-intensity exercise on hepatic and peripheral insulin sensitivity in individuals 

with NAFLD have not been assessed. A better understanding of these outcomes is important, 

given the link between IHTG, glycaemic control and metabolic disease (Byrne and Targher, 

2015; Marchesini et al., 2016; Bril, Barb, et al., 2017). 

High-intensity intermittent exercise training (HIIT), which is characterised by repeated 

intervals of high-intensity exercise interspersed with periods of rest or low-intensity active 

recovery, has emerged as a form of exercise capable of providing many health benefits for 
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individuals with, or at risk of, chronic disease (Gibala et al., 2012). Sprint interval training (SIT) 

is a version of HIIT consisting of brief bursts (30 s) of maximal-intensity exercise (Little et al., 

2011). SIT induces adaptations in skeletal muscle which improve oxidative metabolism (Gibala 

et al., 2012) and, in some studies, enhances whole-body insulin sensitivity and glycaemic 

control (Richards et al., 2010; Cocks et al., 2015). These adaptations are likely to be of benefit 

for individuals with NAFLD, but the influence of SIT on IHTG and tissue-specific (muscle, 

adipose tissue, liver) insulin sensitivity remains unknown. 

This study investigated the feasibility and efficacy of SIT as a therapeutic strategy in 

overweight or obese men with NAFLD. We sought to determine the effect of six weeks of SIT 

on IHTG, visceral (VAT) and subcutaneous adipose tissue (ScAT), as well as hepatic and 

peripheral (skeletal muscle and adipose tissue) insulin sensitivity. We hypothesised that SIT 

would reduce IHTG, VAT and ScAT, and increase insulin sensitivity. 
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6.3  Participant and Methods  

6.3.1 Ethical approval 

This study was approved by the research ethics committees of Loughborough University and 

the University of Nottingham and was conducted in accordance with the Declaration of 

Helsinki (World Health Organisation, 2013). 

6.3.2 Participants 

Nine white European men were recruited from the general population and gave informed, 

written consent to participate (see Section 3.1). Although no power calculation was performed 

for this study, this sample size was chosen based on studies reporting significant improvements 

in cardiorespiratory fitness and indices of glycaemic control with HIIT (Little et al., 2011; 

Cocks et al., 2015). Eligibility criteria included inactive but weight-stable individuals aged 25 

to 55 years with a body mass index (BMI) between 27 and 40 kg·m-2 and a waist circumference 

≥ 94 cm. Participants were considered inactive if they did not complete any form of regular 

structured exercise.  Participants were identified as exhibiting NAFLD in that they had IHTG 

≥ 5.56%, determined during screening using magnetic resonance (MR) spectroscopy (1H-

MRS), and did not report excessive alcohol consumption (>21 units·week-1; Appendix VIII) or 

other secondary causes of hepatic steatosis (Marchesini et al., 2016). Participants were 

excluded if they: a) had any form of diagnosed chronic metabolic disease, b) were taking 

prescribed medications for hypertension, dyslipidaemia or glucose regulation or c) had 

contraindications to exercise or MR procedures.    

6.3.3 Study design 

This study utilised a repeated measures longitudinal design in which, following screening, 

participants completed two consecutive six week phases (control and SIT). This study design 

was chosen over an RCT design to reduce the number of participants recruited and the number 

of measurement sessions required. Our within-measures design also meant that we avoided 

additional heterogeneity that would occur through the recruitment of different individuals into 

two separate groups. Notably, our control phase acted to monitor the variation in study 

outcomes over a similar period to that of the exercise intervention, but with participants 

maintaining their usual lifestyle. All participants completed the control phase followed by the 

exercise intervention, in order to avoid the confounding effects of detraining during the control 

phase. All study assessments were performed on consecutive days at baseline, pre-training and 
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post-training: day 1) IHTG, VAT and ScAT; day 2) hepatic and peripheral insulin sensitivity 

and systemic metabolic biomarkers; day 3) cardiorespiratory fitness. Post-training assessments 

began 48 h after the final SIT session to eliminate the confounding influence of the final 

exercise training session on insulin sensitivity (Sylow et al., 2017).  

Dietary intake was standardised for 24 h before metabolic assessments through provision of all 

food and energy-containing drinks. This diet provided a balanced macronutrient profile and 

was tailored to each participant’s estimated energy requirement (Mifflin et al., 1990) using a  

multiplication factor of 1.45 to account for the physical activity level of an inactive group (FAO, 

WHO and UNU, 2001). Participants were instructed and regularly reminded to maintain their 

usual lifestyle habits throughout both the control and SIT phases of the study. This included 

instructions to maintain dietary habits. Energy intake was not recorded due to concerns that 

monitoring may prompt dietary changes and given documented concerns regarding the 

accuracy of self-reported energy intake data (Dhurandhar et al., 2015). 

6.3.4 Imaging and metabolic assessments 

All metabolic assessments were performed after an overnight fast. MR measurements were 

performed on a Philips Achieva 3T system with 32 channel XL-Torso coil. IHTG was 

measured from a 20x20x20 mm voxel within the right lobe of the liver using 1H-MRS with 

Stimulated Echo Acquisition Mode (STEAM) localization (repetition time = 2046 ms) 

(Stephenson et al., 2013; Bawden, Scott and Aithal, 2017). VAT and ScAT were assessed using 

a two-point modified Dixon technique (Philips) (Nakai et al., 2010) and an in-house algorithm 

to generate fat boundaries of visceral and subcutaneous regions.  

Hepatic and peripheral insulin sensitivity were assessed using a modified version of the 

hyperinsulinaemic, euglycaemic clamp with two stages of insulin infusion, low- (20 mU·m-

2·min-1) and high-dose (50 mU·m-2·min-1), each lasting 120 min. A continuous infusion of [6,6-

D2] glucose tracer was initiated 120 min before the first hyperinsulinaemic stage and continued 

throughout for the quantification of endogenous glucose production (EGP) (Johnston et al., 

2013). Blood glucose was clamped at 4.5 mmol·L-1 (coefficient of variation: mean (± SD) = 

1.6 ± 0.9 and 2.7 ± 1.1 % at steady-state low- and high-dose insulin infusion, respectively). 

Further details of 1H-MRS, MRI and dual-step hyperinsulinaemic, euglycaemic clamp 

procedures can be found in the General Methods section of this thesis (see Sections 3.9 and 

3.10). 
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The hepatic insulin sensitivity index (HISI) (Matsuda and DeFronzo, 1999) and the percentage 

suppression of EGP by low-dose insulin infusion (%EGPsupp) were calculated as indices of 

hepatic insulin sensitivity in the fasted and insulin-stimulated states, respectively, as outlined 

in General Methods (see Section 3.14). Peripheral insulin sensitivity was assessed as whole-

body glucose uptake, which was assumed to be equal to the exogenous glucose infusion rate 

required to maintain euglycaemia at high-dose insulin infusion, during which EGP was 

negligible.  

6.3.5 Assessment of cardiorespiratory fitness and habitual physical activity 

V̇O2 peak and PPO were measured using a ramped (+16 Watt·min-1) cycling test on an 

electromagnetically-braked cycle ergometer (Excalibur Sport, Lode BV, The Netherlands) (see 

Sections 3.6 to 3.8 of General Methods for further details). V̇O2 peak and PPO are presented 

as both absolute units (L·min-1 and W) and relative to the participant’s body weight (mL·kg-

1·min-1 and W·kg-1). Participants were familiarised with this test one week before baseline 

assessments.  

To assess the impact of SIT on habitual physical activity levels, participants wore a tri-axial 

accelerometer (GT3x, Actigraph LLC, USA) for seven consecutive days before each 

assessment (baseline, pre-training and post-training). Data were analysed using computer 

software (Kinesoft 3.3.80, USA) (Troiano et al., 2008) and are presented as absolute minutes 

per day in each activity domain (sedentary time, light, moderate and vigorous physical activity) 

as well as percentages of accelerometer wear time. Further details of data collection and 

analysis can be found in Appendix VIII) 

6.3.6 Exercise training 

Participants completed a SIT program consisting of three exercise sessions per week for six 

weeks. Sessions consisted of a low-intensity warm-up (5 min cycling at 50W), followed by 30 

s intervals of maximal sprint cycling on a stationary ergometer (Ergomedic 894E, Monark 

Exercise AB, Sweden), which was separated by periods of active recovery (4.5 min of low 

intensity cycling at 50W). The braking resistance of the ergometer was increased during 

intervals through the application of a load equivalent to 6.5% of lean body mass, determined 

using bioelectrical impedance analysis (BC-418, TANITA Europe BV, Amsterdam, The 

Netherlands). Participants were instructed to cycle ‘all-out’ during intervals whilst members of 

the research team provided verbal encouragement (Whyte, Gill and Cathcart, 2010). Four 
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intervals were completed per session in the first two weeks with an additional interval added 

to each session every two weeks. Participants therefore completed 90 intervals over the six 

weeks of supervised training. 

6.3.7 Biochemical analyses 

Plasma glucose isotope enrichment (atoms percent excess) was quantified as the 

oxime/trimethylsilyl derivative via gas chromatography mass spectrometry (GC-MS; 7890B, 

MSD 5977A; Agilent Technologies, UK) using selected ion monitoring of the ions at m/z 319 

and 321 (CV = 6.4%). Fasted circulating concentrations of total cholesterol, HDL, LDL, TG 

and NEFA (All CV ≤ 1.5%), and FGF21, follistatin, fetuin-A and LECT2 (all CV ≤ 7.1%) were 

analysed from plasma aliquots, collected before the start of hyperinsulinaemic euglycaemic 

clamps (as outlined in General Methods, Sections 3.11 & 3.12) (All CV ≤ 1.5%). Serum insulin 

was quantified using radioimmunoassay (Millipore, USA) (CV = 7.3%), and HOMA-IR and 

Adipo-IR were calculated (see Section 3.14) (Matthews et al., 1985; Gastaldelli et al., 2007). 

6.3.8 Tracer calculations 

Rates of EGP in the basal state and at low-dose insulin infusion were calculated (Wolfe and 

Chinkes, 2005; Vella and Rizza, 2009), accounting for non-steady-state during low-dose 

insulin infusion and assuming a fractional volume of distribution of 160 mL·kg-1. Further 

details of glucose tracer calculations can be found in Appendix VIII. 

6.3.9 Statistical analyses 

Normally distributed data are presented as mean with standard deviation (SD) and one-way 

repeated measures ANOVA was used to assess changes in outcomes across assessment visits 

(main effect of phase). The homogeneity of variance between data collected at each visit was 

assessed and a Greenhouse-Geisser or Huynh-Feldt correction was applied, where appropriate. 

Statistically significant main effects were explored post-hoc using paired samples t-tests. Non-

normally distributed data are presented as the median with interquartile range (IQR) and 

Friedman tests were used to assess the main effect of phase. Wilcoxon matched pairs tests were 

used for post-hoc pairwise comparisons on non-normally distributed data. Probability (P-) 

values for post-hoc tests were adjusted using the Holm-Bonferroni correction (Holm, 1979) to 

account for multiple comparisons. In text, the changes from pre- to post-training are presented 

as relative percentage change along with 95% confidence interval [CI] and effect size (adjusted 

Hedges’ g*). Cohen’s descriptors were used to interpret the magnitude of effect (Cohen, 1988). 
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For clarity, the change in IHTG is presented as both the absolute and relative percentage change. 

The association between changes in IHTG and whole-body glucose uptake from pre- to post-

SIT was assessed using Pearson’s bivariate correlation analysis.   
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6.4  Results 

6.4.1 Participant recruitment 

One-hundred and thirty-five men expressed an interest to participate and underwent pre-

screening via face-to-face, telephone or email contact. Of these, 32 progressed to formal 

screening, nine of whom were eligible for inclusion in the study. A flowchart of study 

recruitment, along with reasons for exclusion, can be found in Figure 6.1. 

Excluded following pre-screen 
n=103 

Interest expressed and pre-screen completed 
n=135 

Informed, written 
consent received 

n=32 

Reasons for exclusion: 
• Age (n=8) 
• BMI < 27 kg·m-2 (n=18) 
• BMI > 40 kg·m-2 (n=6) 
• Medications (n=12) 

• Antihypertensives (n=4) 
• Statins (n=4) 
• Diabetic (n=2) 
• Other (n=2) 

• Declined having read and 
discussed participant information 
sheet (n=23) 

• Time (n=10) 
• Phobia of needles (n=2) 
• Other / Reason not stated 

(n=11) 
• Lost contact / no response (n=31) 
• Other (n=5) 

Entered full study testing 
n=9 

Reasons for Exclusion: 
• Liver fat < 5.56 % (n=5) 
• High blood pressure (n=6) 
• Abnormal ECG (n=3)  
• BMI < 27 kg·m-2 (n=2) 
• BMI > 40 kg·m-2 (n=1) 
• Failed medical (n=2) 
• Withdrew (n=4) 

• Claustrophobia (n=1) 
• Could no longer commit time (n=1) 
• Lost contact / moved away (n=2) 

Excluded during full screening 
n=23 

Figure 6.1 Study recruitment process 



~ 109 ~ 
 

6.4.2 Participant characteristics and exercise training compliance 

All assessments made at baseline, pre- and post-training can be found in Table 6.1. The median 

self-reported alcohol intake of recruited participants was four units per week (range: 1 to 14). 

One participant was unable to attend hyperinsulinaemic, euglycaemic clamp assessments. 

Participant characteristics specific to these eight individuals can be found in Appendix IX. All 

participants completed exercise training and attended all 18 sessions. Due to fatigue, one 

participant failed to complete two intervals in their first session and one interval in session two, 

but completed all prescribed intervals thereafter (total intervals: 87 = 96.7%).  

There were no significant differences in any measured outcome between baseline and pre-

training assessments, determined as a non-significant main effect of phase or, where 

appropriate, post-hoc comparison. However, from baseline to pre-training assessments, there 

was a tendency for increased fasted serum insulin and HOMA-IR, and reduced relative V̇O2 

peak (uncorrected P = 0.06, 0.07 and 0.07, respectively; all other outcomes P ≥ 0.13). 

6.4.3 Effects of SIT on cardiorespiratory fitness and habitual physical activity 

Training improved absolute and relative V̇O2 peak by 11.2% [95% CI: 6.4 to 16.0%] (g* = 0.83) 

and 13.6% [8.8 to 18.2%] (g* = 0.78; Figure 6.2a), respectively (P ≤ 0.001). This was alongside 

improvements in absolute (14.7% [10.7 to 18.7%], g* = 0.75) and relative (16.2% [11.1 to 

21.2%], g* = 0.64; Figure 6.2b) peak power output (P ≤ 0.001). As outlined in Table 6.2, there 

were no differences in sedentary time or light, moderate or vigorous physical activity 

throughout the duration of the study when analysed either as minutes per day or as a percentage 

of accelerometer wear time (main effect of phase: P ≥ 0.24). 
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Table 6.1 Participant characteristics and study outcomes (continued overleaf) 

 Baseline Pre-training Post-training 

P-value  
(main 

effect of 
phase) 

Effect size  
(Hedges’ g*) 

Baseline- 
Pre-

Training 

Pre- to 
Post-

Training 

Anthropometry             

Age (years) 41 ± 8          
BMI (kg·m-2) 31.7 ± 3.1          
Waist circumference (cm) 111.3 ± 7.5          
Body weight (kg) 102.5 ± 10.6 102.4 ± 10.1 101.2 ± 10.4 0.17 Trivial Trivial 
VAT (mL) (n=8) 1094 ± 238 1220 ± 395 995 ± 281 0.01 0.36 -0.62 
ScAT (mL) (n=8) 2801 ± 847 2800 ± 653 2658 ± 655 0.16 Trivial -0.21 
IHTG (%) 15.6 ± 8.4 14.4 ± 8.7 12.4 ± 8.2 0.001 Trivial -0.23 

Cardiorespiratory Fitness             

Absolute V̇Ȯ2 peak (L·min-1) 3.23 ± 0.41 3.18 ± 0.41 3.53 ± 0.45c <0.001 Trivial 0.83 
Relative V̇Ȯ2 peak (mL·kg-1·min-1) 31.8 ± 4.8 31.0 ± 4.7a 35.1 ± 5.4c <0.001 Trivial 0.78 
Absolute peak power output (W) 239 ± 42 237 ± 42 270 ± 43d <0.001 Trivial 0.75 
Relative peak power output (W·kg-1)  2.36 ± 0.49 2.34 ± 0.54 2.71 ± 0.57d <0.001 Trivial 0.64 

Insulin Sensitivity (n=8)             

Fasted serum insulin (mU·L-1) 17.6 ± 4.5 21.8 ± 8.1a 18.2 ± 6.0b 0.04 0.60 -0.48 
Fasted blood glucose (mmol·L-1) 4.7 ± 0.3 4.7 ± 0.4 4.5 ± 0.5 0.13 Trivial -0.32 
HOMA-IR 3.7 ± 1.0 4.5 ± 1.7a 3.7 ± 1.2b 0.03 0.59 -0.56 
Whole-body glucose uptake  

(mg·kg-1·min-1) 5.2 ± 1.1 5.4 ± 1.1 6.4 ± 1.8e 0.02 Trivial 0.63 

Fasted plasma NEFA (mmol·L-1) 0.59 ± 0.15 0.55 ± 0.12 0.58 ± 0.19 0.83 -0.41 0.29 
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Adipo-IR* 52.7 (44.6 – 83.2)  69.3 (46.9 – 101.8)   55.4 (45.8 – 73.4) >0.99 0.38 -0.24 
Basal EGP (μmol·kg-1·min-1) 10.8 ± 1.5 10.7 ± 2.2 11.2 ± 2.1 0.70 Trivial 0.25 
HISI* (mg·m-2·min-1 per mU·L-1) 0.65 (0.54 – 0.76)   0.54 (0.50 – 0.62)   0.63 (0.49 – 0.74) 0.42 -0.47 0.34 
Low-dose EGP (μmol·kg-1·min-1) 4.39 ± 2.17 4.63 ± 1.31 5.34 ± 1.58 0.27 Trivial 0.46 
%EGPsupp (%) 59.9 ± 17.4 55.7 ± 11.3 51.6 ± 14.6 0.37 -0.28 -0.30 

Circulating Lipids             

Triacylglycerol (mmol·L-1) 2.2 ± 0.9 2.2 ± 0.7 1.9 ± 0.7 0.50 Trivial -0.35 
Total Cholesterol (mmol·L-1) 4.88 ± 0.59 4.80 ± 0.54 4.62 ± 0.75 0.19 Trivial -0.26 
HDL (mmol·L-1)* 0.90 (0.83 – 1.11)  0.88 (0.84 – 1.08)   0.95 (0.88 – 1.18)b 0.01 Trivial 0.44 
LDL (mmol·L-1) 2.85 ± 0.61 2.89 ± 0.54 2.77 ± 0.60 0.48 Trivial -0.21 

Hepatokines             

FGF21 (pg·mL-1) 176 (110 – 505) 210 (131 – 408) 182 (99 – 463) 0.55 Trivial Trivial 
Follistatin (pg·mL-1) 2310 (1534 – 3389) 2104 (1626 – 2683) 2143 (1557 – 2442) 0.37 -0.22 Trivial 
Fetuin-A (µg·mL-1) 608 ± 138 643 ± 176 614 ± 156 0.67 0.21 Trivial 
LECT2 (ng·mL-1) 40 ± 5 39 ± 5 39 ± 5 0.51 Trivial Trivial 

Data presented as mean ± SD and for n=9 unless otherwise stated. * indicates that data are not normally distributed and thus presented as median 

(IQR). a the difference between baseline and pre-training values approached statistical significance (uncorrected P-values; FPI P=0.06, HOMA-

IR P=0.07, Relative V̇Ȯ2 peak P=0.07), b significantly different from pre-training values (P<0.05), c significantly different from pre-training values 

(P<0.01), d significantly different from pre-training values (P<0.001), e the difference between pre-training and post-training values approached 

statistical significance (uncorrected P=0.09); Trivial effect sizes were considered those of magnitude < 0.2. To convert serum insulin from mU·L-

1 to pmol·L-1, multiply by 6. 
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Table 6.2 Habitual sedentary time and physical activity during baseline, pre- and post-training assessment periods 

 Baseline Pre-training Post-training 
P-value 

(main effect  
of phase) 

General           
Device wear time (minutes per day) 1027 ± 131 989 ± 119 1027 ± 166 0.68 
Counts per wear minute 293 ± 111 316 ± 156 294 ± 92 0.34 

Sedentary Behaviour           
Minutes per day 719 ± 92 693 ± 139 726 ± 155 0.77 
% of wear time# 70.3 (64.2 – 74.8) 74.9 (59.6 – 76.6) 66.5 (65.6 – 77.3) 0.37 

Light Activity           
Minutes per day 270 ± 74 256 ± 82 262 ± 59 0.60 
% of wear time 26.1 ± 5.5 26.0 ± 8.1 25.8 ± 5.5 0.93 

Moderate Activity           
Minutes per day# 23.0 (18.0 – 50.5) 31.0 (19.5 – 63.0) 30.0 (13.5 – 52.5) 0.89 
% of wear time# 2.4 (1.6 – 5.5) 2.7 (1.9 – 7.2) 2.5 (1.3 – 6.3) 0.24 

Vigorous Activity           
Minutes per day# 0.0 (0.0 – 2.0) 0.0 (0.0 – 1.5) 0.0 (0.0 – 1.5) 0.94 
% of wear time# 0.03 (0.00 – 0.18) 0.01 (0.00 – 0.13) 0.03 (0.00 – 0.13) 0.71 

Moderate-Vigorous Activity (MVPA)           
Minutes per day# 23.0 (18.5 – 55.0) 31.0 (19.5 – 67.0) 32.0 (13.5 – 59.0) 0.92 
% of wear time# 2.4 (1.7 – 6.1) 2.7 (1.9 – 7.8) 2.7 (1.3 – 7.1) 0.40 

Data presented as mean ± SD, unless otherwise stated. n=9. #indicates that data are not normally distributed and thus presented as median (IQR).  

P-values represent the main effect of phase. 
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6.4.4 Effects of SIT on ectopic fat and systemic metabolic biomarkers  

Despite no change in body weight across study visits (main effect of phase: P = 0.17; Table 

6.1; Figure 6.3a), SIT elicited a reduction in IHTG (P = 0.03; Figure 6.3b). From pre- to post-

training, the mean absolute reduction was 2.1% [-3.4 to 0.8%], which equated to a relative 

reduction of 12.4% [-31.6 to 6.7%] (g* = -0.23). One MR-image was found to be corrupted at 

the point of analysis so changes in VAT and ScAT are presented for n=8 (characteristics 

specific to these individuals can be found in Appendix IX). These data do not correspond to 

the same eight individuals who completed the hyperinsulinaemic, euglycaemic clamp 

assessments. Training reduced VAT by 16.9% [-24.4 to -9.4%] (g* = -0.62, P = 0.02; Figure 

6.3c), but there were no changes in ScAT (main effect; P = 0.16; Figure 6.3d). Training 

increased circulating HDL by 8.4% [4.6 to 12.2%] (g* = 0.44, P = 0.02;) but total cholesterol, 

LDL, TG were unchanged throughout the study (P ≥ 0.19; Table 6.1). Likewise, circulating 

hepatokine concentrations were similar at baseline, pre- and post-training (≥ 0.37; Table 6.1). 

Figure 6.2 a) Peak oxygen uptake (V̇O2 peak) and b) peak power output measured at 

baseline, pre- and post-training. Data presented as mean ± SD (n=9). Outcomes presented 

relative to participant body weight. † indicates the difference between baseline and pre-training 

values approached statistical significance (unadjusted P = 0.07); * indicates significantly 

different from pre-training value (P ≤ 0.001). 
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6.4.5 Effects of SIT on peripheral and hepatic insulin sensitivity 

Figure 6.4 displays mean circulating insulin concentrations measured throughout dual-step 

hyperinsulinaemic, euglycaemic clamp assessments. There were no significant differences in 

the serum insulin concentrations reached at steady state low-dose (P = 0.55) or high-dose (P = 

0.64) insulin infusions between baseline, pre-training and post-training assessments.  

Figure 6.3 a) Body weight, b) intrahepatic triglyceride (IHTG), c) visceral adipose tissue 

(VAT) and d) subcutaneous abdominal adipose tissue (ScAT) measured at baseline, pre- 

and post-training. Data presented as mean ± SD. Data for body weight and IHTG are n=9. 

Data for VAT and ScAT are n=8. * indicates significantly different from pre-training value (P 

≤ 0.03). 
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There was a significant main effect of phase for the increase in whole-body glucose uptake, 

which is indicative of peripheral insulin sensitivity, across the three study visits (P = 0.02; 

Figure 6.5a). However, responses to SIT were highly variable between individuals (range: -

18.5% to +58.7%; Figure 6.5b) and, despite a medium effect size (g* = 0.63), the change from 

pre- to post-training (18.1% [-3.0 to 39.2%]) was not statistically significant (unadjusted P = 

0.09). There was an association between the change in IHTG and the change in whole-body 

glucose uptake from pre- to post-training (r = -0.83, P = 0.01). EGP in the basal state and 

during low-dose insulin infusion, HISI (Figure 6.5c) and %EGPsupp (Figure 6.5d), each markers 

of hepatic insulin sensitivity in the fasted or insulin-stimulated states respectively, did not differ 

across study visits (P ≥ 0.37; Table 6.1).  

Fasted blood glucose, plasma NEFA and Adipo-IR remained unchanged across the study visits 

(P ≥ 0.13; Table 6.1). From pre- to post-training, fasted serum insulin (-13.9% [-24.9 to -2.9%], 

g* = -0.48, P = 0.04) and HOMA-IR (-16.6% [-27.5 to -5.6%], g* = -0.56, P = 0.02) were 

reduced. However, these reductions were similar in magnitude to the increases from baseline 

to pre-training (unadjusted P = 0.06 and P = 0.07, respectively) such that post-training values 

were no different from those measured at baseline (P ≥ 0.68; Table 6.1). 

Figure 6.4 Serum insulin concentrations throughout dual-step hyperinsulinaemic, 

euglycaemic clamp assessments. Data presented as mean ± SD (n=8). 
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Figure 6.5 a-b) Peripheral and c) basal and d) insulin-stimulated hepatic insulin 

sensitivity measured at baseline, pre- and post-training. Data in ‘A’ and ‘D’ presented as 

mean ± SD (n=8). #Data in ‘C’ are not normally distributed and thus presented as median 

(IQR). Data in ‘B’ are % change from pre- to post-training measurements for each participant. 
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6.5  Discussion 

The principal findings of this study are that a six-week SIT intervention is feasible for 

individuals with NAFLD and is well adhered to in a controlled laboratory setting. Furthermore, 

six weeks of SIT reduces IHTG and VAT in the absence of body weight change and, whilst 

hepatic insulin sensitivity appears to be unaffected, changes in peripheral insulin sensitivity are 

highly variable between individuals.  

This study reports almost perfect adherence to a six-week SIT intervention in nine individuals. 

Specifically, every participant completed the exercise programme, attending all 18 training 

sessions. Eight participants completed all 90 of the prescribed intervals whilst the remaining 

participant completed 87 intervals, with the three missing intervals contained within the first 

two training sessions. The implication is that individuals with NAFLD are able and willing to 

perform exercise training sessions composed of bursts of maximal exercise. This is important 

because observational evidence (Kistler et al., 2011) and experimental data (Cho et al., 2015; 

Oh et al., 2017) suggest that high-intensity exercise may be more potent in attenuating IHTG 

accumulation and NAFLD progression than moderate-intensity exercise. This SIT intervention 

may, therefore, represent a model of exercise that facilitates the completion of more intense 

exercise in individuals with NAFLD. This intervention was performed in a tightly controlled 

laboratory setting, with specialist equipment and where participants were individually 

supported by the research team. The participants recruited to this study were also screened 

thoroughly to ensure the absence of advanced cardiometabolic disease and may, therefore, not 

be representative of the majority of individuals with NAFLD. Given that the risk of an acute 

cardiac event during exercise is elevated in previously inactive individuals with established 

cardiometabolic disease (Thompson et al., 2007), the implementation of SIT requires 

additional scrutiny. The necessity for medical clearance and acclimatisation to exercise must 

be considered in this context (Riebe et al., 2015).  

This study reports a mean absolute reduction in IHTG of 2.1% after six weeks of SIT in 

individuals with elevated IHTG (relative change from baseline: -12.4%). Previous studies 

employing aerobic and resistance exercise, combined or in isolation, report a reduction of 

similar magnitude (10 to 21%) in the absence of significant weight loss (Johnson et al., 2009; 

Hallsworth et al., 2011; Sullivan et al., 2012; Keating et al., 2015; Pugh et al., 2016; Houghton 

et al., 2017). However, greater reductions in IHTG (27 to 42%) have been reported when 

significant weight loss occurs as a result of exercise training (Hallsworth et al., 2015; Keating 
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et al., 2015; Cuthbertson et al., 2016; Zhang et al., 2016). Therefore, whilst the independent 

effects of exercise on IHTG are recognised (Brouwers et al., 2016), the greatest benefits occur 

when exercise contributes to a negative energy balance. 

It was beyond the scope of this study to examine the mechanisms through which SIT reduced 

IHTG. However, some speculative inferences can be made. There was a small reduction in 

mean body weight from pre- to post-SIT (mean 1.2 kg) which, whilst not statistically 

significant, may have impacted on the reduction in IHTG reported. Using the established, albeit 

simplified, rule of thumb that a 3500 kcal energy deficit corresponds to an approximate 1 lb 

loss of fat mass (Guth, 2014), and assuming that substantial changes in lean body mass over 

the 6 week SIT intervention are unlikely, the 1.2 kg (2.65 lbs) weight loss reported in this study 

corresponds to a total energy deficit of approximately 9275 kcal. Previous studies have reported 

that the energy expenditure of a single SIT session is approximately 143 kcal (Deighton et al., 

2013). Therefore, the total energy expenditure that can be attributed to our intervention (18 

sessions) is approximately 2574 kcal. Consequently, the intervention alone does not account 

for the weight loss reported in this study. Habitual physical activity was consistent across the 

duration of our study, but it may be that changes in energy intake or other components of daily 

energy balance (such basal metabolic rate) may have occurred. The exact nature of these 

potential changes is unclear at present, with the exiting literature reporting large heterogeneity 

in compensatory responses to SIT at both the individual and study level (Taylor et al., 2018; 

Schubert et al., 2017). 

In addition to the small degree of weight loss reported, metabolic factors may also underpin 

the reported change in IHTG (Brouwers et al., 2016). Neither fasted circulating NEFA nor 

Adipo-IR differed throughout the current study, suggesting that an improvement in adipose 

tissue insulin sensitivity in the fasted state is unlikely to be responsible for the reduction in 

IHTG with training. However, the possibility that changes in postprandial adipose tissue insulin 

sensitivity occurred cannot be dismissed (Brouwers et al., 2016). Circulating glucose 

stimulates hepatic de novo lipogenesis (Ameer et al., 2014) and, although fasted blood glucose 

was unchanged throughout the study, post-prandial glucose is likely to have been reduced in 

those with improved peripheral insulin sensitivity. Therefore, particularly in individuals who 

displayed improvements in whole-body glucose uptake, a reduction in hepatic de novo 

lipogenesis may have contributed to post-training reductions in IHTG (Linden et al., 2015). 

Lastly, altered very low-density lipoprotein metabolism is unlikely to be responsible for 
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exercise-induced reductions in IHTG (Sullivan et al., 2012) but enhanced capacity to oxidise 

hepatic lipid is possible (Linden et al., 2015).  

Peripheral insulin sensitivity increased throughout this study but individual changes from pre- 

to post-SIT were highly variable and, despite a mean relative increase of 18.1% and a moderate 

effect size, this change was not statistically significant. In obese but otherwise healthy men, 

four weeks (Cocks et al., 2015), but not two weeks (Whyte, Gill and Cathcart, 2010), of SIT 

increased peripheral insulin sensitivity. However, 15 to 20% of individuals may display 

minimal, or even adverse, responses after exercise training in outcomes related to glucose 

homeostasis (Stephens and Sparks, 2015) and insulin sensitivity improved in only 10 out of 12 

healthy individuals who completed a two-week SIT intervention, remaining unchanged in one 

and decreasing in another (Richards et al., 2010). This degree of variation in response to 

exercise is consistent with our findings where peripheral insulin sensitivity improved in 75% 

of participants after SIT, yet was reduced in 25%. Given this variation, a greater sample size 

may be required to detect significant differences in peripheral insulin sensitivity following SIT. 

A retrospective sample size calculation indicates that, with the current change in whole-body 

glucose uptake (mean ± SD = 0.99 ± 1.41 mg·kg-1·min-1; thus standardised difference = 0.70; 

within-person correlation = 0.63), 14 individuals would have been required to detect a 

statistically significant difference from pre- to post-training with 80% power and an alpha error 

rate of 0.05. A number of factors, including genetic polymorphisms, epigenetics and baseline 

participant characteristics, may impact on individual responses (Böhm et al., 2016). 

Neither basal nor insulin-stimulated hepatic insulin sensitivity are changed after six weeks of 

SIT. Our findings agree with data showing no change in hepatic insulin sensitivity after 12 

weeks of aerobic training in patients with NAFLD, despite significant reductions in body 

weight (Cuthbertson et al., 2016). EGP during low-dose insulin infusion is reduced after 

aerobic or combined aerobic-plus-resistance exercise training in sedentary, healthy individuals 

and in patients with T2DM (Shojaee-Moradie et al., 2007; Meex et al., 2010). However, neither 

of these studies report changes in basal EGP or HISI, and the change at low-dose insulin 

infusion reported by Meex et al. was no longer statistically significant when presented 

as %EGPsupp. EGP in both the basal state and during low-dose insulin infusion was reduced in 

overweight, older women after a 9-month moderate-intensity aerobic exercise intervention 

(DiPietro et al., 2006). However, this may have been due to notably higher rates of EGP in this 

group at baseline compared to both the control group, and a separate group completing a higher-

intensity exercise programme. The high-intensity exercise training had no effect on EGP in 
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either the basal or insulin-stimulated states (DiPietro et al., 2006). The lack of improvements 

in hepatic insulin sensitivity in the current study may be due to insufficient intervention 

duration or because IHTG at the end of the intervention remained elevated (Cuthbertson et al., 

2016). Hepatic insulin sensitivity, assessed as %EGPsupp, may be impaired with as little as 1.5% 

IHTG, with no further deterioration as IHTG increases (Bril, Barb, et al., 2017). Post-training 

IHTG values in the present study ranged from 4.3 to 25.9% (mean 12.4%).  

The favourable changes in IHTG, VAT, HDL and cardiorespiratory fitness in response to SIT 

are important for individuals with NAFLD. NAFLD is intricately related to the metabolic 

syndrome and associated with an elevated risk of T2DM, cardiovascular and renal disease 

(Byrne and Targher, 2015). Ectopic lipid and dyslipidaemia are components of the metabolic 

syndrome and improvements in these risk factors are important in the treatment of NAFLD. 

Additionally, cardiorespiratory fitness is a marker of metabolic health and inversely associated 

with all-cause and cardiovascular mortality (Blair et al., 1989; Kodama et al., 2009). The large 

increase following SIT most likely reflects metabolic adaptations within skeletal muscle 

(Gibala et al., 2012), which may provide benefit via improved substrate metabolism (Rabøl et 

al., 2011; Brouwers et al., 2016). Collectively, the present study demonstrates the potential of 

SIT to elicit relevant metabolic improvements in men with NAFLD, but it is notable that the 

magnitude of response over this intervention was insufficient to re-establish values in an 

optimal range. Furthermore, we report no effect of SIT on other cardiovascular risk factors, 

such as circulating TG, total cholesterol and LDL. Each of these have been previously shown 

to be reduced by exercise training (Garber et al., 2011). Whilst our null findings may be the 

result of a lack of statistical power, we report a small effect size from pre- to post-SIT for each 

of these outcomes (g* = -0.21 to -0.35). Alternatively, it may be that the intervention was 

insufficient in duration or that more traditional forms of exercise training, such as CME, which 

are associated with greater energy expenditure and weight loss, may be required to elicit potent 

benefits on these outcomes.  

It should also be noted that we saw no significant change in circulating hepatokines as a result 

of our SIT intervention and the effect size for each hepatokine measured was trivial. As stated 

previously, however, changes in body weight, IHTG and indices of metabolic health were also 

small in this study. It may be larger changes in metabolic parameters than those seen in the 

current study are required to modulate circulating hepatokine concentrations. 
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A strength of this study is the use of the most precise techniques available to assess key 

outcomes. Conversely, this study was conducted in a relatively small and homogenous sample 

of white European men with no other chronic metabolic disease. We may have lacked statistical 

power to detect differences in some of our outcomes following training and null-findings may 

be the result of type II error. The findings of this study may also not be generalisable to women, 

individuals of different ethnicity or those with metabolic co-morbidities. Furthermore, 

participants did not have a formal diagnosis of NAFLD so we have no information regarding 

disease severity. An RCT design would also have been preferred. However, the inclusion of a 

control phase within our within-measures study design was chosen to monitor variation in study 

outcomes over a period of no intervention, whilst avoiding the additional recruitment of a non-

exercise control group.  

In this study we have shown that men with NAFLD are compliant with SIT which, over six 

weeks, improves cardiorespiratory fitness and reduces IHTG and VAT, without altering body 

weight. Furthermore, changes in peripheral insulin sensitivity with training are highly variable 

between individuals, whilst hepatic insulin sensitivity remains unchanged. These results 

support the potential for interval-based, high-intensity exercise as an alternative to continuous 

moderate-intensity exercise in the management of NAFLD. However, larger RCTs are required 

to test the effectiveness of SIT in diverse populations, as well as its applicability in a clinical 

setting, sustainability over time and efficacy in individuals with advanced NAFLD. 
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CHAPTER 7 
  

 THE EFFECT OF EXERCISE TRAINING ON 
INTRAHEPATIC TRIGLYCERIDE AND HEPATIC INSULIN 

SENSITIVITY: A SYSTEMATIC REVIEW AND META-
ANALYSIS  
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Sargeant JA, Gray LJ, Bodicoat DH et al. (2018). Obesity Reviews. 19: 1446-1459. 

This chapter presents the published manuscript. 
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7.1  Abstract 

This systematic review and meta-analysis determined the impact of structured exercise training, 

and the influence of associated weight loss, on intrahepatic triglyceride (IHTG) in individuals 

with non-alcoholic fatty liver disease (NAFLD). It also examined its effect on hepatic insulin 

sensitivity in individuals with or at increased risk of NAFLD. Analyses were restricted to 

studies using magnetic resonance spectroscopy or liver biopsy for the measurement of IHTG 

and isotope-labelled glucose tracer for assessment of hepatic insulin sensitivity. Pooling data 

from 17 studies (373 exercising participants), exercise training for one to 24 weeks (mode: 12 

weeks) elicits an absolute reduction in IHTG of 3.31% (95% CI: -4.41 to -2.22%). Exercise 

reduces IHTG independent of significant weight change (-2.16 [-2.87 to -1.44]%), but benefits 

are substantially greater when weight loss occurs (-4.87 [-6.64 to -3.11]%). Furthermore, meta-

regression identified a positive association between percentage weight loss and absolute 

reduction in IHTG (β = 0.99 [0.62 to 1.36], P<0.001). Pooling of six studies (94 participants) 

suggests that exercise training also improves basal hepatic insulin sensitivity (mean change in 

hepatic insulin sensitivity index: 0.13 [0.05 to 0.21] mg·m-2·min-1 per μU·mL-1), but available 

evidence is limited and the impact of exercise on insulin-stimulated hepatic insulin sensitivity 

remains unclear.  
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7.2  Introduction 

Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease 

worldwide (Younossi et al., 2016) and a prominent risk factor for cardiovascular disease, 

chronic kidney disease and type 2 diabetes mellitus (T2DM) (Byrne and Targher, 2015). Insulin 

resistance promotes hepatic lipid accumulation, which is most commonly assessed via the 

measurement of intrahepatic triglyceride (IHTG) (Samuel et al., 2004; Taylor, 2008; 

Kumashiro et al., 2011; Shulman, 2014). The associated accumulation of lipid intermediates, 

such as diacylglycerol (DAG), may in turn perpetuate insulin resistance (Samuel et al., 2004; 

Taylor, 2008; Kumashiro et al., 2011; Shulman, 2014); providing a mechanistic link between 

NAFLD and impaired metabolic regulation. As such, strong associations exist between excess 

IHTG and insulin resistance in multiple tissues, including the liver (Korenblat et al., 2008; 

Shulman, 2014; Bril, Barb, et al., 2017). Defects in hepatic insulin signalling contribute to 

elevated endogenous glucose production (EGP) which is integral to the pathophysiology of 

impaired glucose regulation and T2DM (Taylor, 2008; Rizza, 2010; Petersen, Vatner and 

Shulman, 2017). 

Prompted by reports that exercise training has the capacity to reduce IHTG in the absence of 

weight loss (Johnson et al., 2009; Sullivan et al., 2012), the independent effects of exercise in 

the treatment of NAFLD have been examined (Keating et al., 2012; Orci et al., 2016; Smart et 

al., 2016; Hashida et al., 2017; Katsagoni et al., 2017). These reviews confirm the ability of 

exercise to reduce IHTG without significant weight change; however, the importance of the 

exercise-related energy deficit and subsequent weight loss has not been investigated thoroughly. 

Acute and sustained energy restriction and weight loss potently reduces IHTG in individuals 

with NAFLD (Kirk et al., 2009; Hickman et al., 2013) and therefore logic dictates that weight 

loss associated with exercise training would be an important mediator of the IHTG response to 

exercise training. This issue has practical implications for the prescription of exercise in the 

management of NAFLD and thus deserves explicit attention.  

Previous reviews highlight a range of different methods to estimate IHTG, including non-

invasive imaging by ultrasound (US) or computed tomography (CT), proton magnetic 

resonance spectroscopy (1H-MRS) and invasive liver biopsy. The inclusion of multiple 

methods within these reviews has the benefit of broadening study eligibility and thus increasing 

pooled participant sample size. However, it also adds an additional source of heterogeneity. 

US and CT are also limited by a lack of sensitivity to detect mild-to-moderate accumulation of 
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IHTG and to quantify subtle changes resulting from experimental interventions (Festi et al., 

2013). 1H-MRS has much greater precision (Bawden, Scott and Aithal, 2017), making it a more 

suitable method for experimental research, whilst the necessity to characterise histological 

features beyond steatosis make liver biopsy the standard tool in clinical practice (Marchesini 

et al., 2016; Chalasani et al., 2018).  

The effect of exercise training on hepatic insulin sensitivity has not been reviewed. A number 

of indices exist which assess insulin resistance using simple circulating biomarkers (Matsuda 

and DeFronzo, 1999) but stable or radioactive isotope-labelled tracers are required to obtain 

the most accurate measurement of insulin sensitivity in individual tissues (Kim et al., 2016). 

Glucose tracers can be used to quantify EGP (primarily attributed to hepatic glucose production) 

(Petersen, Vatner and Shulman, 2017) to accurately assess hepatic insulin sensitivity in the 

basal (fasted) and insulin-stimulated (post-prandial) states; using the hepatic insulin sensitivity 

index (HISI) and percentage suppression of EGP (%EGPsupp) by low-dose insulin infusion, 

respectively (DeFronzo, Simonson and Ferrannini, 1982; Matsuda and DeFronzo, 1999). 

This systematic review and meta-analysis had two primary aims. First, we investigated the 

effects of structured exercise training on IHTG in individuals with NAFLD, with a particular 

focus on the impact of concurrent weight loss, whilst restricting analyses to studies using 1H-

MRS and liver biopsy. Second, we explored the effects of exercise training on basal and 

insulin-stimulated hepatic insulin sensitivity. 
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7.3  Methods 

The current systematic review and meta-analysis (PROSPERO ID: CRD42014007268) was 

conducted in accordance with the “Cochrane handbook for systematic reviews of interventions” 

and PRISMA guidelines (Moher et al., 2009; Higgins and Green, 2011). All aspects of the 

literature search, study selection and risk of bias assessment were completed by two researchers 

independently (Jack Sargeant and James King/Scott Willis). Data extraction and analysis were 

performed by a single researcher (Jack Sargeant) before being checked, independently, by 

another (extraction: James King; analysis: Danielle Bodicoat/Laura Gray). 

7.3.1 Primary outcomes 

This review had two outcome measures: 

• IHTG 

• Hepatic insulin sensitivity (basal and insulin-stimulated) 

Eligible studies were restricted to those using 1H-MRS or liver biopsy for the measurement of 

IHTG and using isotope-labelled glucose tracer to quantify EGP in the fasted state and 

following low-dose (≤ 20 mU·m-2·min-1 or ≤ 0.5 mU·kg-1·min-1) insulin infusion, for the 

calculation of HISI and %EGPsupp, respectively. 

7.3.2 Literature search 

Six electronic online databases (EMBASE, MEDLINE, PubMed, Scopus, Sport Discus and 

Web of Science) were searched from inception to July 2017 using the following terms related 

to exercise, IHTG and hepatic insulin sensitivity (all terms within brackets were combined 

using ‘OR’):  

(exercise, physical activity, training) AND [(liver fat, hepatic fat, intrahepatic triglyceride, 

IHTG, intrahepatocellular lipids, intrahepatic lipids, non-alcoholic fatty liver disease, 

NAFLD, non-alcoholic fatty liver, fatty liver, hepatic steatosis, non-alcoholic steatosis, liver 

steatosis, non-alcoholic steatohepatitis, NASH, hepatic steatohepatitis, liver steatohepatitis, 

liver function) OR (hepatic insulin sensitivity, hepatic insulin resistance, liver insulin 

sensitivity, liver insulin resistance, hepatic IR, liver IR, hepatic glucose production, liver 

glucose production, endogenous glucose production, glycolysis, gluconeogenesis)]. 

Reference lists of all included manuscripts were screened for further eligible studies.  
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7.3.3 Study selection 

Human experimental studies written in the English language were included. Conference 

abstracts were considered but underwent the same eligibility and risk of bias assessments as 

full articles. Eligible studies were those in which participants with overweight or obesity 

completed an exercise training programme of at least three exercise sessions. All types of study 

design were considered. Studies investigating changes in IHTG were only eligible if 

participants had diagnosed NAFLD or where baseline characteristics met diagnostic criteria 

(IHTG > 5% in the absence of secondary steatogenic sources, including excessive alcohol 

intake and viral infection) (Marchesini et al., 2016; Chalasani et al., 2018). NAFLD was not 

an inclusion criterion for studies investigating changes in hepatic insulin sensitivity as it 

became apparent that very few studies have examined this outcome exclusively in this patient 

group and several otherwise eligible studies did not measure IHTG. Studies investigating 

exercise in combination with dietary intervention were eligible only when data were available 

for matched, independent groups prescribed exercise training with or without diet. In studies 

measuring hepatic insulin sensitivity, it was essential that participants refrained from strenuous 

exercise for at least 48 hours before assessments (Sylow et al., 2017). 

7.3.4 Data extraction 

Descriptive information (first author and year of publication), details of study design, 

participant and intervention characteristics and outcome data were extracted from eligible 

manuscripts. Outcome data were extracted as mean change and standard deviation from pre- 

to post-intervention for all exercise groups, as well as for the control groups of randomised 

controlled trials (RCTs). Where possible, outcome data presented in alternative forms were 

converted as outlined in Appendix X. When data were presented in graphical form only, values 

were estimated using commercially available software (Digitizeit, Version 2.2, Bormann, I., 

Braunschweig, Germany). When incomplete or insufficient data were reported, the authors 

were contacted and if the required data were unavailable the study was removed. When 

characteristics of exercise interventions (such as the frequency, intensity or duration of exercise 

sessions) progressed over the course of a programme, a weighted mean was calculated. Further 

details of data extraction can be found in Appendix X. 

A number of variations of HISI exist, including the statistical inverse (the hepatic insulin 

resistance index; HIRI). Studies reporting these alternatives were included in qualitative review 
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but were only included in quantitative meta-analysis when raw data were available for the 

calculation of HISI as originally described (Matsuda and DeFronzo, 1999): 

1000 / (EGP [mg·m-2·min-1] x fasted plasma insulin [µU·mL-1]) 

Studies that reported EGP and fasted plasma insulin (FPI) separately were also considered, but 

were excluded from all analyses unless raw data were available for the calculation of HISI as 

above. Mean values of EGP and FPI were not combined. Similarly, when study design allowed 

the calculation of %EGPsupp but it was not reported, raw data were requested. 

7.3.5 Risk of bias assessment 

Studies were assessed for risk of bias using a modified Downs and Black scale (Downs and 

Black, 1998). This checklist includes 26 items divided into categories of (i) reporting, (ii) 

external validity, (iii) internal validity – bias, (iv) internal validity – confounding and (v) power. 

The Downs and Black scale was modified in two ways. Blinding participants and 

experimenters to group allocations is a difficult task in exercise trials. It is possible, however, 

to blind experimenters who are conducting data analysis. As such, item 14 of the original scale 

(concerning participant blinding) was removed, whilst item 15 (concerning experimenter 

blinding) was scored according to whether attempts were made to blind experimenters during 

data analysis. Item 27, concerning statistical power, was modified as follows: 

Formal power calculation performed based on detecting a significant change in IHTG = 

score of two awarded 

Formal power calculation performed based on detecting a significant difference in a relevant 

and related outcome but which was not IHTG = score of one awarded 

No formal power calculation performed = score of zero awarded. 

Consensus between the two independent assessors (Jack Sargeant/James King) was ensured. 

Publication bias was assessed using funnel plots. 

7.3.6 Meta-analyses 

Pooled characteristics of study participants are presented as weighted means, accounting for 

differences in sample size, along with the range. Quantitative analysis was conducted using 

commercially available software (Stata IC, Version 14.1, StataCorp LP, Texas, USA). Pooled 

mean differences with 95% confidence intervals (95% CI) were calculated for primary 
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outcomes using random effects models and heterogeneity was assessed quantitatively using the 

I2 statistic. 

Where possible, primary outcomes were analysed in two ways: 

• Within-group analysis: The change from pre- to post-intervention measurements in all 

exercise groups of all eligible studies. 

• Between-group analysis: The difference in the change from pre- to post-intervention 

between exercise and control groups in RCTs only. 

In RCTs with multiple intervention groups, the intervention groups were combined, where 

possible, using appropriate statistical formulae (Higgins and Green, 2011) and, for the purpose 

of exercise programme description, the exercise intensity, duration and frequency of the 

combined group were calculated as the weighted mean of the individual groups. When groups 

were not suitable to be combined (for example, aerobic and resistance exercise training groups), 

data from the aerobic intervention group was used. 

7.3.7 Subgroup analyses and meta-regression 

Subgroup analyses were performed to investigate whether the presence of significant weight 

loss (defined as a statistically significant reduction in body weight from pre- to post-

intervention) explained heterogeneity in the response of IHTG to exercise training. The 

influence of the exercise mode (aerobic, high-intensity interval (HIIT), resistance or combined 

aerobic/HIIT-plus-resistance training) was also investigated, as was the exercise intensity 

(moderate- or high-intensity) of aerobic and HIIT interventions. Exercise intensity was 

categorised according to published criteria (Garber et al., 2011), which are summarised in 

Table 7.1. One study (Meex et al., 2010) prescribed exercise relative to maximal workload. 

This study was categorised using the same percentage categories as those of V̇O2 peak. Meta-

regression was also performed to explore the effects of intervention duration and the magnitude 

of body weight change on changes in IHTG. All subgroup analyses and meta-regressions were 

performed using the mean change from pre- to post-training in all exercise groups of eligible 

studies. Secondary analyses of hepatic insulin sensitivity were not performed due to the limited 

number of studies identified. 
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Table 7.1 Categories of exercise intensity 

Adapted from (Garber et al., 2011); %HR max: percentage of maximal heart rate; %HRR: 

percentage of heart rate reserve; %V̇O2 peak: percentage of peak oxygen uptake; RPE: rating 

of perceived exertion (Borg, 1970). 

 RPE %HR max %HRR  %V̇O2 peak 

Moderate-intensity 12 – 13 64 – 76 40 – 59 46 – 63 

High-intensity 14 – 17 77 – 95 60 – 89 64 – 90 
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7.4  Results 

7.4.1 Literature search 

Figure 7.1 presents a flowchart of the literature search and study selection processes. To 

summarise, 20,055 records were returned by the six online databases, along with five from 

reference lists of eligible manuscripts. Of these, 111 manuscripts underwent full assessment 

and 21 were eligible for inclusion (20 for meta-analyses). Twenty were complete articles and 

one was a conference abstract, although the latter has since been published in full (Sargeant, 

Bawden, et al., 2018). Table 7.2 presents an overview of all eligible studies and readers are 

directed to Appendix XI for more detailed description of participant and intervention 

characteristics for each study. 

 

Figure 7.1 Flowchart of literature search process 
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Table 7.2 Overview of included studies (continued overleaf) 

First Author 
(Year of 

Publication) 

Study  
Design 

Sample Size  
(M/F) 

Exercise 
Mode 

Intervention 
Duration 

Session 
Frequency 

Exercise 
Intensity 

(Category) 

Technique 
used for 

Assessment 
of IHTG 

Index of 
Basal 

Hepatic IS 
Originally 
Reported 

Details of Low-
Dose Insulin 

Infusion 

Weight 
Change with 

Exercise 
Training 
(mean % 

change from 
baseline) 

Cassidy  
(2016) RCT 

Ex: 12 (10/2) 

Con: 11 (8/3) 
HIIT 12 weeks 3 times per 

week High 1H-MRS - - -1.1 β 

Cuthbertson 
(2016) RCT 

Ex: 30 (23/7) 
[12 (8/3/1 NR)] 

Con: 20 (16/4) 
[7 (3/4)] 

Aerobic 16 weeks 3 – 5 times 
per week Moderate 1H-MRS HIRI 0.3 mU•kg-1•min-1 

for 120 min -2.5 α, β 

Hallsworth  
(2011) RCT 

Ex: 11 (NR) 

Con: 8 (NR) 
Resistance 8 weeks 3 times per 

week N/A 1H-MRS - - 0.0 

Hallsworth  
(2015) RCT 

Ex: 12 (6/6) 

Con: 11 (10/1) 
HIIT 12 weeks 3 times per 

week High 1H-MRS - - -1.6 α, β 

Haus  
(2013) 

Uncontrolled 
Intervention Ex: 17 (NR) Aerobic 1 week 7 times per 

week High 1H-MRS - - 0.2 

Hickman  
(2013) RCT* 

Ex: 9 (7/2) 
[13 (9/4)] 

Resistance 24 weeks 3 times per 
week N/A Biopsy† HIRI - -2.6 

Houghton  
(2017) RCT 

Ex: 12 (7/5) 

Con: 12 (7/5) 

Combined 
(HIIT + 
Resistance) 

12 weeks 3 times per 
week High 1H-MRS - - 1.1 

Johnson  
(2009) RCT 

Ex: 12 (NR) 

Con: 7 (NR) 
Aerobic 4 weeks 3 times per 

week Moderate 1H-MRS - - -0.3 
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Keating  
(2015) RCT 

Ex1: 12 (6/6) 

Ex2: 11 (5/6) 

Con: 12 (3/9) 

Aerobic 8 weeks 

Ex1: 3 
sessions per 
week 
Ex2: 4 
sessions per 
week 

Ex1: High 

Ex2: Moderate 
1H-MRS - - 

Ex1: -1.2 α, β 

Ex2: -1.5 α, β 

Langleite  
(2016) 

Uncontrolled 
Intervention Ex: 11 (11/0) 

Combined 
(Aerobic + 
HIIT + 
Resistance) 

12 weeks 

4 times per 
week 
(1 aerobic,  
1 HIIT, 2 
resistance) 

High 1H-MRS - - -1.2 

Lee  
(2013) RCT 

Ex1: [16 (0/16)] 

Ex2: [16 (0/16)] 

Con: [12 (0/12)] 

Ex1: 
Aerobic 
Ex2: 
Resistance 

12 weeks 3 times per 
week High - HISI† - 

Ex1: -1.3 

Ex2: -0.3 

Malin  
(2013) 

Uncontrolled 
Intervention Ex: 13 (6/7) Aerobic 1 week 7 times per 

week High 1H-MRS - - 0.6 

Meex  
(2010) 

Uncontrolled 
Intervention 

Ex1: [20 (20/0)] 

Ex2: [17 (17/0)] 

Combined 
(Aerobic + 
Resistance) 

12 weeks 

3 times per 
week  
(2 aerobic, 1 
resistance)  

Moderate - HISI# - 
Ex1: -1.1 

Ex2: -1.0 

Oh  
(2014) 

Uncontrolled 
Intervention Ex: 18 (4/14) Vibration / 

Acceleration 6 weeks 3 times per 
week N/A 1H-MRS - - -0.4 α 

Pugh  
(2014) RCT 

Ex: 13 (7/6) 

Con: 8 (4/4) 
Aerobic 16 weeks 3 – 5 times 

per week Moderate 1H-MRS - - -2.4 

Sargeant  
(2018) 

Controlled 
Longitudinal 
Intervention 

Ex: 9 (9/0) 
[8 (8/0)] 

HIIT 6 weeks 3 times per 
week High 1H-MRS HISI 20 mU•m-2•min-1 

for 120 min -1.2 

Shojaee-
Moradie  
(2007) 

RCT 
Ex: [10 (10/0)] 

Con: [7 (7/0)] 
Aerobic 6 weeks 3 times per 

week High - HISI# 0.3 mU•kg-1•min-1 
for 120 min -0.8 
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Sullivan  
(2012) RCT 

Ex: 12 (4/8) 

Con: 6 (1/5) 
Aerobic 16 weeks 5 times per 

week Moderate 1H-MRS - - -0.2 α 

van der 
Heijden  
(2010a)‡ 

Uncontrolled 
Intervention 

Ex: 15 (7/8) 
[15 (7/8)] 

Aerobic 12 weeks 4 times per 
week High 1H-MRS HISI - -0.5 

van der 
Heijden  
(2010b) 

Uncontrolled 
Intervention 

Ex: 7 (NR) 
[12 (6/6)] 

Resistance 12 weeks 2 times per 
week N/A 1H-MRS HISI - 2.6 α 

Zhang  
(2016) RCT 

Ex1: 73 (22/51) 

Ex2: 73 (21/52) 

Con: 74 (28/46) 

Aerobic 24 weeks 5 times per 
week 

Ex1: Moderate 

Ex2: High 
1H-MRS - - 

Ex1: -2.8 α, β 

Ex2: -6.0 α β 

Sample sizes in squared brackets represent the number of participants included in hepatic insulin sensitivity outcomes; Mean changes in body 

weight with exercise are as reported in the original manuscript (α indicates significantly different from baseline, β indicates significantly different 

from non-exercise control group); Exercise intensity is categorised according to published criteria (Garber et al., 2011), which are summarised in 

Table 7.1; *Study did not include a ‘standard care’ or ‘no intervention’ group, exercise was compared with hypocaloric diet; †Study was excluded 

from one or more meta-analyses - Hickman et al (2013) was removed from meta-analyses of changes in hepatic steatosis to reduce heterogeneity 

as it was the only study using liver biopsy to assess IHTG. Lee et al (2013) was removed from meta-analysis of changes in basal hepatic insulin 

sensitivity because raw data were not available to allow re-calculation of HISI as outlined by Matsuda and DeFronzo (1999); #Published manuscript 

contained no index of hepatic insulin sensitivity. HISI was calculated after authors provided raw data; ‡Manuscript refers to the same study as van 

der Heijden et al (2009); Con: Control group; Ex1/2: Exercise group 1/2; N/A: not applicable; NR: not reported.
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7.4.2 Risk of bias assessment 

Full results of the risk of bias assessment can be found in Table 7.3. Studies scored highly on 

items related to reporting, with the exception of reporting adverse events, and internal validity. 

Seven studies (Johnson et al., 2009; Hallsworth et al., 2011; Hickman et al., 2013; Cassidy et 

al., 2016; Cuthbertson et al., 2016; Langleite et al., 2016; Zhang et al., 2016) blinded the 

investigators performing assessments of IHTG, but allocation concealment was only performed 

in three out of 10 RCTs (Cassidy et al., 2016; Langleite et al., 2016; Zhang et al., 2016). 

Conversely, studies scored poorly in relation to external validity, primarily due to an inability 

to determine whether recruited participants were representative of the entire population or of 

those who were approached to participate. One study (Keating et al., 2015) performed a power 

calculation on IHTG to detect change between groups indicating that 116 participants were 

required per group. However, due to limited data to inform this power calculation and the 

difficulties in performing a study of that design in such large numbers they did not recruit to 

this extent. Given that 1) the purpose of this meta-analysis was not to determine differences 

between groups, 2) they had attempted to perform an appropriate calculation and 3) the 

numbers they did recruit were similar to those of other suitably powered studies, a score of two 

was awarded for item 27 (statistical power). Funnel plots suggested minimal evidence of 

publication bias (Figure 7.2a-c), although the plot of all intervention groups investigating IHTG 

(Figure 7.2a) suggested a small bias towards studies reporting small effects. This would, if 

anything, result in an attenuated pooled effect.  

Seven studies recorded energy intake using self-reported food diaries (Johnson et al., 2009; 

Haus et al., 2013; Oh et al., 2014; Pugh et al., 2014; Keating et al., 2015; Cuthbertson et al., 

2016) or a validated food frequency questionnaire (Langleite et al., 2016). All of these reported 

no change in energy intake from pre- to post-intervention, although one (Keating et al., 2015) 

reported a small increase in carbohydrate intake in participants completing a high-intensity, 

low-volume exercise programme. One study (Lee et al., 2013) prescribed a weight 

maintenance diet to participants. A further 10 studies instructed participants to maintain their 

dietary habits throughout the duration of study involvement without formally monitoring diet 

(Shojaee-Moradie et al., 2007; van der Heijden, Wang, Chu, Sauer, et al., 2010; van der 

Heijden, Wang, Chu, Toffolo, et al., 2010; Hickman et al., 2013; Malin, Mulya, et al., 2013; 

Hallsworth et al., 2015; Cassidy et al., 2016; Zhang et al., 2016; Houghton et al., 2017; 

Sargeant, Bawden, et al., 2018), whilst three manuscripts make no reference to the control of 

dietary intake (Meex et al., 2010; Hallsworth et al., 2011; Sullivan et al., 2012). 
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Table 7.3 Risk of bias assessment for all studies (legend overleaf) 

First Author  
(Publication Year) 

 

Item Category / Number 

Reporting External 
Validity Internal Validity: Bias* Internal Validity: Confounding Power 

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 27 
Cassidy (2016) 1 1 1 1 2 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 

Cuthbertson (2016) 1 1 1 1 2 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 2 

Hallsworth (2011) 1 1 1 1 2 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 2 

Hallsworth (2015) 1 1 1 1 2 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 0 1 2 

Haus (2013) 1 1 1 1 2 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 0 0 0 0 1 0 

Hickman (2013) 1 1 1 1 2 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 2 

Houghton (2017) 1 1 1 1 2 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 2 

Johnson (2009) 1 1 1 1 2 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 0 

Keating (2015) 1 1 1 1 2 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 2 

Langleite (2016) 1 1 1 1 2 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 

Lee (2013) 0 1 1 1 2 1 1 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 

Malin (2013) 1 1 1 1 2 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 0 

Meex (2010) 0 1 1 1 2 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 0 0 1 1 0 

Oh (2014) 1 1 1 1 2 1 1 0 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0 

Pugh (2014) 1 1 1 1 2 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 

Sargeant (2018) 1 1 1 1 2 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 0 

Shojaee-Moradie (2007) 0 1 1 1 2 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 

Sullivan (2012) 1 1 1 1 2 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 2 

van der Heijden 
(2009 & 2010a)‡ 

1 1 1 1 2 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 0 

van der Heijden (2010b) 1 1 1 1 2 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0 1 1 2 

Zhang (2016) 1 1 1 1 2 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 2 
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Full marking criteria can be found in the appendix of the original article by Downs and Black (Downs and Black, 1998). * Item 14 of the Downs 

and Black scale (concerning participant blinding) was not scored in this meta-analysis as blinding participants to group allocation in exercise 

studies is very difficult and uncommon. Item 27 (concerning power) was amended as outlined above. A higher number represents a more positive 

score. ‡ Two manuscripts reporting separate outcomes of the same study.
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Figure 7.2 Funnel plots for assessment of publication bias in studies included in the 

following analyses: a) within-group change in IHTG, b) difference between groups in 

change in IHTG, and c) within-group change in HISI 
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7.4.3 The effects of exercise training on IHTG 

Eighteen studies reported the effects of exercise training on IHTG (Johnson et al., 2009; van 

der Heijden, Wang, Chu, Sauer, et al., 2010; van der Heijden, Wang, Chu, Toffolo, et al., 2010; 

Hallsworth et al., 2011, 2015; Sullivan et al., 2012; Malin, Mulya, et al., 2013; Haus et al., 

2013; Hickman et al., 2013; Oh et al., 2014; Pugh et al., 2014; Keating et al., 2015; Cassidy et 

al., 2016; Cuthbertson et al., 2016; Langleite et al., 2016; Houghton et al., 2017; Sargeant, 

Bawden, et al., 2018) (Table 7.2). Only one of these used paired liver biopsy (Hickman et al., 

2013), reporting no significant effect of 6-months resistance exercise on the percentage of 

hepatocytes affected by steatosis in individuals with NAFLD. The remaining 17 studies used 
1H-MRS to measure IHTG so, to reduce heterogeneity, only these studies were included in 

subsequent meta-analyses. These studies contained 19 exercise groups and a combined total of 

373 participants (male: 151 [40.5%]; female: 182 [48.8%]; data not reported: 40 [10.7%]). 

Participants had a weighted mean age of 50 [range 15.5 to 60] years and were overweight or 

obese (body mass index: 30.6 [27.8 to 37.1] kg·m-2; body fat percentage: 35.6 [28.7 to 43.7] %; 

waist circumference: 101.2 [95.2 to 111.9] cm). Participants were reported as sedentary and/or 

inactive and had low aerobic capacity (peak oxygen uptake: 25.2 [21.8 to 38.7] ml·kg-1·min-1). 

Two studies actively recruited individuals with T2DM (Cassidy et al., 2016) or dysregulated 

glucose metabolism (Langleite et al., 2016), whilst the mean baseline characteristics of seven 

other studies (Johnson et al., 2009; Hallsworth et al., 2011, 2015; Haus et al., 2013; Malin, 

Mulya, et al., 2013; Zhang et al., 2016; Houghton et al., 2017) met diagnostic criteria for 

impaired fasted glucose (weighted mean fasted glucose: 5.61 [4.09 to 6.80] mmol·L-1) 

(American Diabetes Association, 2018). The weighted mean IHTG at baseline was 15.8 [6.9 

to 23.1] %.  

Interventions included aerobic (n = 11), HIIT (n = 3), resistance (n = 2), combined 

aerobic/HIIT-plus-resistance (n = 2) and acceleration/vibration (n = 1) exercise training, 

ranging from seven days to 24 weeks (mode: 12 weeks). Session frequency ranged from two 

to seven times per week (mode: three times per week) for 30 to 60 minutes. Six aerobic 

interventions used moderate-intensity exercise whilst the remaining five, along with all of the 

HIIT interventions, were categorised as high-intensity.  

Ten of the included studies were RCTs, containing a combined 283 and 169 participants in 

exercise and control groups, respectively (Table 7.2). Pooled participant and intervention 

characteristics of RCTs only can be found in Tables 7.4 and 7.5. There were no significant 
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differences between the pooled characteristics of RCTs and those of all eligible studies (P ≥ 

0.13). Participants in RCT control groups were instructed to maintain standard care (n = 5) or 

habitual lifestyle activities (n = 1), prescribed a low-intensity stretching programme (n = 2) or 

attended sessions providing education on the health benefits of exercise (n = 2). 

 

Table 7.4 Pooled participant characteristics of RCTs included in meta-analysis of the 

effects of exercise training on IHTG (n = 10 studies) 

 Exercise Groups Control Groups 

Total participant number 283 169 

Male/Female/NR 111/149/23 77/77/15 

Age (years) 52 (45 to 61) 52 (39 to 62) 

Body weight (kg) 82.7 (71.4 to 103.0) 84.0 (72.1 to 113.7) 

BMI (kg·m-2) 30.2 (28.0 to 37.1) 30.2 (28.0 to 40.0) 

Body fat (%) 34.4 (30.4 to 38.9) 34.8 (31.0 to 42.5) 

Waist circumference (cm) 99.9 (95.5 to 110.0) 99.2 (93.7 to 109.0) 

Fasted glucose (mmol·L-1) 5.63 (4.30 to 6.80) 5.67 (4.00 to 7.00) 

V̇O2 peak (ml·kg-1·min-1) 23.6 (21.8 to 26.4) 22.3 (18.5 to 27.0) 

IHTG (%) 16.2 (6.9 to 21.3) 14.5 (7.1 to 21.4) 

Data presented as weighted mean with range. 

 

Table 7.5 Pooled intervention characteristics of RCTs included in meta-analysis of the 

effects of exercise training on IHTG (n = 10 studies) 

 Mode Range 

Intervention duration (weeks) 12 4 to 24 

Session frequency (times per week) 3 3 to 5 

Session duration (min) - 30 to 53 
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Fourteen of the 17 studies reported a statistically significant benefit of exercise on IHTG either 

within-group (van der Heijden, Wang, Chu, Sauer, et al., 2010; Oh et al., 2014; Pugh et al., 

2014; Langleite et al., 2016; Sargeant, Bawden, et al., 2018), between-group (Johnson et al., 

2009; Sullivan et al., 2012), or both (Hallsworth et al., 2011, 2015; Keating et al., 2015; 

Cassidy et al., 2016; Cuthbertson et al., 2016; Zhang et al., 2016; Houghton et al., 2017). In 

the two studies with multiple exercise groups, exercise elicited a significant reduction in both 

groups (Keating et al., 2015; Zhang et al., 2016). One RCT reported a significant reduction 

from baseline, but this was not significant when compared to the change in the control group 

(Pugh et al., 2014). Of the three studies that reported no benefit of exercise, two were short 

interventions (performing exercise on seven consecutive days) (Haus et al., 2013; Malin, 

Mulya, et al., 2013), whilst the other was a resistance exercise programme in obese adolescents 

(van der Heijden, Wang, Chu, Toffolo, et al., 2010). 

When data from pre- to post-exercise in all interventions were pooled, a statistically significant 

benefit of exercise training was found (Figure 7.3), but high heterogeneity was also apparent. 

In a sensitivity analysis of RCTs only, the significant benefit of exercise was strengthened 

(mean difference in change between groups [95% CI]: -3.61 [-4.68 to -2.54] %; Figure 7.4), 

and results were highly homogeneous (I2 < 0.1%, P = 0.84). Therefore, to allow the inclusion 

of maximum data, subgroup analyses and meta-regressions were performed using the within-

group change in all interventions. 
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Figure 7.3 Meta-analysis of the pooled effect of exercise training on IHTG from pre- to 

post-training in all exercise groups of all eligible studies. Studies are grouped by exercise 

mode. 
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Figure 7.4 Meta-analysis of the pooled effect of exercise training on IHTG using eligible 

RCTs only 
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Exercise training significantly reduced IHTG in the absence of weight loss. However, when 

significant weight loss occurred, the pooled effect was substantially greater (Figure 7.5). 

Furthermore, meta-regression displayed a significant positive relationship between the change 

in body weight (relative to baseline) and the absolute change in IHTG (β = 0.99 [95% CI: 0.62 

to 1.36], P < 0.001; Figure 7.6).  A significant relationship was also apparent between 

intervention duration and change in IHTG (β = -0.27 [95% CI: -0.35 to -0.19], P < 0.001; 

Figure 7.7), suggesting that as the duration of intervention increases, so does the magnitude of 

reduction in IHTG. The duration of interventions that elicited significant weight loss versus 

those that did not were similar (median [range]: 12 [8 to 24] vs. 12 [1 to 16] weeks), but 

bivariate Pearson’s correlation analysis showed a significant positive relationship between the 

duration of intervention and magnitude of weight loss elicited (r2 = 36%, P < 0.01). 

 

Figure 7.5 Meta-analysis of the pooled effect of exercise training on IHTG from pre- to 

post-training in all exercise groups of all eligible studies when studies are grouped into 

those that elicited weight loss versus those that did not.
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Figure 7.6 Meta-regression between the magnitude of weight loss, relative to baseline, 

elicited by exercise intervention and the absolute change in IHTG. Each circle represents 

a study, with larger circles indicating greater weight within the meta-regression analysis. 

Figure 7.7 Meta-regression between duration of exercise intervention in weeks and the 

absolute change in IHTG from baseline elicited in all eligible studies. Each circle represents 

a study, with larger circles indicating greater weight within the meta-regression analysis. 
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Figure 7.3 displays the mean change from baseline in IHTG for all interventions categorised 

by exercise type. The pooled effect on IHTG for aerobic exercise interventions was greater 

than that for each other mode of exercise, as well as the pooled mean for all interventions. 

However, the high prevalence of aerobic interventions in comparison to other types of 

intervention should be noted. When interventions were grouped according to exercise intensity, 

the pooled effect for moderate-intensity interventions was greater than that of the high-intensity 

exercise programmes (-4.82 [-7.00 to -2.65] %, I2 = 75.5%, P = 0.001 vs. -2.89 [-4.25 to -

1.53] %, I2 = 73.2%, P < 0.001). The intervention duration of the moderate and high-intensity 

interventions were similar (median [range]: 14 [4 to 24] vs. 12 [1 to 24] weeks). 

7.4.4 Overview of studies investigating the effects of exercise on hepatic insulin sensitivity 

Eight studies, containing a total of 10 exercise groups, reported the effects of exercise training 

on hepatic insulin sensitivity (Shojaee-Moradie et al., 2007; van der Heijden et al., 2009; Meex 

et al., 2010; van der Heijden, Wang, Chu, Toffolo, et al., 2010; Hickman et al., 2013; Lee et 

al., 2013; Cuthbertson et al., 2016; Sargeant, Bawden, et al., 2018) (Table 7.2). Four studies 

reported HISI (van der Heijden, Wang, Chu, Sauer, et al., 2010; van der Heijden, Wang, Chu, 

Toffolo, et al., 2010; Lee et al., 2013; Sargeant, Bawden, et al., 2018), although three presented 

EGP (and thus HISI) in different units to those outlined above. Two studies reported HIRI 

(Hickman et al., 2013; Cuthbertson et al., 2016). Four studies were able to provide raw data 

for the re-calculation of HISI (van der Heijden, Wang, Chu, Sauer, et al., 2010; van der Heijden, 

Wang, Chu, Toffolo, et al., 2010; Hickman et al., 2013; Cuthbertson et al., 2016), along with 

two that reported EGP and FPI separately (Shojaee-Moradie et al., 2007; Meex et al., 2010). 

As such, seven studies (eight exercise groups) were included in meta-analysis of changes in 

HISI with exercise training. Only two of these (Shojaee-Moradie et al., 2007; Cuthbertson et 

al., 2016) were RCTs with a non-intervention/standard care control group (containing a 

combined 22 and 14 participants in exercise and control groups, respectively) so only within-

group analysis was conducted. Three studies also reported %EGPsupp with low-dose insulin 

infusion (Shojaee-Moradie et al., 2007; Cuthbertson et al., 2016; Sargeant, Bawden, et al., 

2018) but, due to this limited number, meta-analysis was not performed. Seven further studies 

were found that utilised a study design allowing the calculation of at least one of HISI 

or %EGPsupp, but neither were reported (DeFronzo, Sherwin and Kraemer, 1987; Segal et al., 

1991; Hughes et al., 1993; Coker et al., 2006, 2009; DiPietro et al., 2006; Kirk, Sullivan and 

Klein, 2010). Whilst the authors of five of these studies kindly replied to requests for raw data, 

none were able to provide it. 
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7.4.5 The effects of exercise training on basal hepatic insulin sensitivity  

The study that was excluded from meta-analysis of changes in HISI reported a tendency for a 

reduction in HIRI in obese adolescent girls following 12 weeks of resistance exercise training, 

but not after 12 weeks of moderate- to high-intensity aerobic exercise (Lee et al., 2013). The 

remaining eight exercise groups were pooled and had a combined total of 105 participants 

(male: 84 (80%); female: 20 (19%); data not available: 1 (1%)). Participants had a weighted 

mean age of 43 [range 15.5 to 59] years and, as per study selection criteria, were overweight 

or obese (body mass index: 31.3 [27.6 to 35.3] kg·m-2; body fat percentage: 34.0 [25.5 to 

40.8] %). Participants were reported as sedentary and/or inactive and had low aerobic capacity 

(maximal or peak oxygen uptake: 24.7 [21.6 to 32.0] ml·kg-1·min-1). Five studies (five exercise 

groups) were conducted in individuals with diagnosed NAFLD or in those with baseline 

characteristics that met diagnostic criteria as outlined above (van der Heijden et al., 2009; van 

der Heijden, Wang, Chu, Toffolo, et al., 2010; Hickman et al., 2013; Cuthbertson et al., 2016; 

Sargeant, Bawden, et al., 2018). One study included separate groups of patients with impaired 

fasted glucose and T2DM (Meex et al., 2010) but, according to mean baseline characteristics, 

all other studies recruited individuals with normal fasted glycaemia (weighted mean fasted 

glucose for all studies was 5.36 [4.70 to 9.00] mmol·L-1) (American Diabetes Association, 

2018). The weighted mean HISI at baseline was 0.99 [0.58 to 2.09] mg·m-2·min-1 per μU·mL-

1.  

Studies included aerobic (n = 3), HIIT (n = 1), resistance (n = 2) and combined (n = 2) exercise 

interventions for six (n = 2), 12 (n = 5) or 24 (n = 1) weeks. Participants exercised on two to 

four days per week with sessions ranging from 20 to 60 minutes. One aerobic intervention, and 

the aerobic component of the combined exercise programmes, utilised moderate-intensity 

exercise, whilst the remaining aerobic interventions and the HIIT intervention were categorised 

as high-intensity.  

Two of the eight exercise groups displayed a statistically significant improvement in HISI with 

exercise, both of which were in adolescents (van der Heijden et al., 2009; van der Heijden, 

Wang, Chu, Toffolo, et al., 2010). One study reported a tendency for reduced HIRI after 

exercise training, but this effect was statistically significant when HISI was re-calculated as 

above. Neither RCT reported a significant difference between exercise and control groups 

(Shojaee-Moradie et al., 2007; Cuthbertson et al., 2016). However, when data were pooled, a 

statistically significant benefit of exercise was found (Figure 7.8). Based on the weighted mean 
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HISI at baseline, this pooled effect represents a relative improvement of approximately 13%. 

Two studies in obese adolescents reported a reduction in basal EGP after aerobic or resistance 

exercise training (van der Heijden et al., 2009; van der Heijden, Wang, Chu, Toffolo, et al., 

2010), but EGP was unaffected in all other studies. In contrast, FPI was significantly reduced 

in five of the exercise groups (van der Heijden et al., 2009; Meex et al., 2010; Cuthbertson et 

al., 2016; Sargeant, Bawden, et al., 2018), whilst the mean reduction in another (Hickman et 

al., 2013) approached statistical significance. One study (Cuthbertson et al., 2016) reported a 

statistically significant reduction in body weight from pre- to post-exercise training (2.5%) but 

this was not associated with an improvement in HISI. Another study (Hickman et al., 2013) 

reported a mean reduction in body weight of similar magnitude (2.6%) which, although not 

statistically significant, was associated with a significant improvement in HISI. 

 

Figure 7.8 Meta-analysis of the pooled effect of exercise training on HISI from pre- to 

post-training in all exercise groups of all eligible studies 

 

7.4.6 The effects of exercise training on insulin-stimulated hepatic insulin sensitivity 

Participant and intervention characteristics for the three studies examining the effects of 

exercise on %EGPsupp can be found in supplementary materials (Appendix XI). The two RCTs 

that reported HISI also reported %EGPsupp. One RCT reported a significant improvement 

in %EGPsupp, compared to the control group, after six weeks of aerobic exercise training, 

despite no change in total body weight or IHTG (Shojaee-Moradie et al., 2007). In 

contrast, %EGPsupp was reportedly unaffected by either twelve weeks of aerobic training 

(Cuthbertson et al., 2016) or six weeks of HIIT (Sargeant, Bawden, et al., 2018).  
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7.5  Discussion 

The prominent findings of this review are that structured exercise training, independent of 

dietary intervention, reduces IHTG in individuals with NAFLD. Importantly, whilst this effect 

is apparent without weight loss, the magnitude of reduction increases in direct proportion to 

the amount of weight loss induced by the intervention. Furthermore, our analyses indicate that 

exercise training for six to 24 weeks may also improve basal hepatic insulin sensitivity by 

approximately 13%. 

Previous reviews report that exercise training significantly reduces IHTG with a moderate to 

large pooled effect size (Keating et al., 2012; Orci et al., 2016; Katsagoni et al., 2017). The 

restriction of the current meta-analysis to a single technique (1H-MRS) allowed us to report 

this pooled effect as the absolute mean difference and our findings suggest that exercise 

training for between one and 24 weeks (mode 12 weeks) elicits an absolute reduction in IHTG 

of approximately 2.2 to 4.7% (mean ~3.5%); re-enforcing the meaningful therapeutic role of 

exercise for individuals with NAFLD. An important finding to emerge from this meta-analysis 

is the impact of weight loss as a mediator of the reduction in IHTG associated with exercise 

training interventions. This outcome is consistent with previous reviews (Brouwers et al., 2016; 

Golabi et al., 2016), which have highlighted the more potent impact of weight loss per se 

(primarily through dietary energy restriction) than the independent effect of exercise in the 

absence of body weight reduction. Specifically, our data show that whilst IHTG is significantly 

reduced in the absence of exercise-induced weight loss, the magnitude of effect is more than 

two-fold greater when weight loss occurs (-2.16 vs. -4.87%). Meta-regression suggests that 

each 1% relative reduction in body weight is associated with approximately 1% absolute 

reduction in IHTG. Interestingly, an almost identical relationship can be seen in studies that 

have examined IHTG responses to short-, medium- and long-term dietary energy restriction 

interventions (Browning et al., 2011; Wong et al., 2013; Patel et al., 2015). These data 

therefore illustrate that relative changes in IHTG are several-fold greater than associated 

alterations in body weight regardless of physiological stimulus. This overriding influence of 

weight loss may also explain why previous reviews have not found additive benefits of exercise 

when combined with dietary intervention (Keating et al., 2012; Smart et al., 2016). In these 

scenarios, large energy deficits created by dietary modification may dilute the much smaller 

contribution of exercise (Ross, Freeman and Janssen, 2000). Consequently, whilst exercise 

alone may be effective at reducing IHTG, the greatest therapeutic benefits will be realised when 

exercise interventions contribute to weight loss in combination with dietary energy restriction.  
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These findings have direct implications for exercise prescription in NAFLD. Firstly, given that 

weight loss appears to be the dominant factor mediating changes in IHTG (as demonstrated in 

our meta-regression analyses), and the capacity of dietary energy restriction to induce large 

amounts of weight loss is greater than that of exercise training (Browning et al., 2011; Wong 

et al., 2013; Patel et al., 2015), structured exercise training should be seen as a valuable addition, 

rather than an alternative, to dietary energy restriction in the majority of individuals. That said, 

whilst the magnitude of effects may be comparatively smaller, there is evidence to suggest 

weight-independent effects of exercise training on IHTG, including beneficial changes in 

skeletal muscle and hepatic substrate metabolism (Brouwers et al., 2016). Therefore, the 

benefits of exercise on IHTG should not be completely dismissed and structured exercise 

training may be an effective alternative for individuals where prolonged energy restriction has 

proved ineffective. No studies to date have directly compared the impact of the diet- versus 

exercise-induced weight loss, matched for magnitude, on IHTG. Notably, the wider benefits of 

exercise training on metabolic health beyond IHTG should also not be forgotten (Garber et al., 

2011). 

When recommending exercise training for individuals with NAFLD, the greatest impact of 

exercise training on IHTG is likely to occur with exercise that is associated with the greatest 

weight loss (Smart et al., 2016). Evidence suggests that aerobic exercise interventions typically 

evoke a higher amount of weight loss than anaerobic exercise modalities (Yumuk et al., 2015). 

The superiority of aerobic exercise interventions for reducing IHTG in individuals with 

NAFLD is supported by the present results and those of a previous meta-analysis (Orci et al., 

2016). Consequently, although resistance exercise training and HIIT promote a reduction in 

IHTG in patients with NAFLD, greater benefits will likely be achieved through continuous 

aerobic exercise protocols such as running, swimming and cycling. 

Exercise volume may also be an important variable which helps to explain why our analyses 

documented a larger reduction in IHTG with moderate- compared to high-intensity exercise 

interventions. Specifically, compared with shorter intense bouts of exercise, continuous 

moderate-intensity protocols commonly exhibit a greater total exercise volume and, 

consequently, energy expenditure. This higher level of energy expenditure may elicit a greater 

impact on metabolism, energy balance and IHTG. It is, however, important to consider that 

exercise-related energy expenditure may not necessarily translate into greater total daily energy 

expenditure (Pontzer et al., 2016; Melanson, 2017). Furthermore, given the inability to 

accurately calculate exercise-related energy expenditure in our review, further research is 
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needed to investigate the precise relationship between exercise-related energy expenditure and 

IHTG. 

Our analyses also demonstrate a significant relationship between the duration of exercise 

interventions and the change in IHTG, and a positive relationship between the duration of 

exercise training and the magnitude of weight loss. Each week of exercise training is associated 

with a reduction in IHTG of approximately 0.27%. Collectively, our findings highlight the 

importance of developing sustainable exercise interventions, which, in combination with 

dietary strategies, may elicit the greatest benefits on IHTG in individuals with NAFLD. 

The second part of this review examined the influence of exercise training on hepatic insulin 

sensitivity. Hepatic insulin resistance, which is strongly correlated with elevated IHTG 

(Korenblat et al., 2008; Shulman, 2014; Bril, Barb, et al., 2017), contributes to impaired 

glycaemic control in the pathogenesis of T2DM (Taylor, 2008; Rizza, 2010; Petersen, Vatner 

and Shulman, 2017). We assessed the impact of exercise interventions on HISI and %EGPsupp, 

which are measures of hepatic insulin sensitivity in the basal and insulin-stimulated states, 

respectively. The paucity of studies examining these effects meant that our analyses were 

conducted using any study that recruited individuals with overweight or obesity, who are thus 

at increased risk of NAFLD, in addition to studies exclusively in patients with NAFLD. 

In total, we identified eight studies (two of which had two exercise groups) which assessed the 

impact of exercise on basal hepatic insulin sensitivity (Shojaee-Moradie et al., 2007; van der 

Heijden et al., 2009; Meex et al., 2010; van der Heijden, Wang, Chu, Toffolo, et al., 2010; 

Hickman et al., 2013; Lee et al., 2013; Cuthbertson et al., 2016; Sargeant, Bawden, et al., 

2018). Seven studies had sufficient data for inclusion in our meta-analysis but only two of 

which were RCTs. Therefore, our analysis was restricted to within-group changes in eight 

exercise groups. Interestingly, despite only three exercise groups displaying significant 

improvements in HISI from pre- to post- intervention (van der Heijden et al., 2009; van der 

Heijden, Wang, Chu, Toffolo, et al., 2010; Hickman et al., 2013), our pooled analysis identified 

a statistically significant increase of approximately 13%. In adults, basal rates of EGP were 

unaffected by exercise, but this improvement in basal hepatic insulin sensitivity may be 

reflected by a reduction of FPI. The clinical relevance of this magnitude of improvement in 

basal hepatic insulin sensitivity for individuals that are overweight and obese is not 

immediately clear. However, this novel finding suggests that exercise training favourably 

modifies this important parameter in individuals at risk of NAFLD and T2DM.  
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Three studies reported the effects of exercise on %EGPsupp (Shojaee-Moradie et al., 2007; 

Cuthbertson et al., 2016; Sargeant, Bawden, et al., 2018), two of which were RCTs employing 

aerobic exercise interventions of six and 12 weeks (Shojaee-Moradie et al., 2007; Cuthbertson 

et al., 2016). While one study reported significant improvement in %EGPsupp, no change was 

reported in the other. Therefore, we cannot draw firm conclusions on the impact of exercise 

training on insulin-stimulated hepatic insulin sensitivity at this time.  

It is notable that we identified a further seven studies whose methods permitted the calculation 

of HISI or %EGPsupp but data were not presented or available. Furthermore, when hepatic 

insulin sensitivity was reported, the precise details of the experimental methods employed, 

units used for presentation of outcomes and calculation of indices of hepatic insulin sensitivity, 

varied between studies. This review, therefore, highlights the need for greater methodological 

and reporting consistency when assessing hepatic insulin resistance (e.g. standardisation of 

low-dose insulin infusion when undertaking dual-stepped hyperinsulinaemic-euglycaemic 

clamps and consistent use of units). 

Our meta-analysis of the effects of exercise training on IHTG in individuals with NAFLD, and 

the mediating influence of weight loss, is the most precise quantitative synthesis to date. 

Furthermore, this is the first systematic review and meta-analysis assessing the impact of 

exercise interventions on hepatic insulin sensitivity. However, a few important considerations 

are noteworthy. A range of exercise interventions are identified and our analyses of the effects 

of exercise on IHTG display significant heterogeneity. Whilst we explore potential sources of 

this heterogeneity, it is assumed that these studies are suitable for data pooling. Secondly, 

although most included studies attempt to control habitual diet, this is notoriously difficult 

(Dhurandhar et al., 2015) and the potential for dietary changes to influence study outcomes 

must, therefore, be recognised. Additionally, our subgroup analyses investigating the influence 

of weight loss on IHTG were performed with studies categorised according to statistical, rather 

than clinical, significance. This has the potential to exclude studies from the weight loss group 

that demonstrate physiologically relevant, but not statistically significant, weight loss. Notably, 

however, this is unlikely in our analyses because, in the ‘no weight loss’ studies, the largest 

mean relative reduction in body weight after exercise training was 1.2%. Furthermore, it is 

assumed that weight loss resulting from exercise training is primarily reflective of a reduction 

in fat mass but some exercise regimens may promote the synthesis of skeletal muscle; 

attenuating any reduction in total body weight. It should also be noted that while a reduction in 

IHTG may be indicative of improved metabolic health, these may be mediated by a reduction 
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in hepatic lipid intermediates rather than IHTG per se (Samuel et al., 2004; Kumashiro et al., 

2011; Shulman, 2014). Finally, the limited number of studies investigating hepatic insulin 

sensitivity means that our findings should be taken with caution. Large RCTs are required to 

further investigate the effects of exercise training on hepatic insulin sensitivity, particularly in 

individuals with NAFLD and T2DM.  

In conclusion, this systematic review and meta-analysis has shown that exercise training 

reduces IHTG in individuals with NAFLD and, whilst benefits can be realised in the absence 

of weight loss, reductions in IHTG are proportionally related to the magnitude of weight loss 

induced. Furthermore, exercise training may improve basal hepatic insulin sensitivity in 

individuals that are overweight or obese, which may have beneficial implications for the 

management of NAFLD and T2DM. 
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CHAPTER 8 

GENERAL DISCUSSION 
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8.1  Principal findings and chapter overview 

Collectively, the body of work presented in this thesis had three primary aims:  

1. To examine the effects of acute exercise on several circulating hepatokines, and their 

associations with anthropometric and circulating clinical biomarkers in individuals of 

different weight status and glycaemic control. 

2. To test the feasibility and efficacy of SIT as a novel intervention for patients with 

NAFLD, particularly exploring its effects on IHTG and tissue-specific (hepatic and 

peripheral) insulin sensitivity. 

3. To collate the existing literature and summarise the effects of exercise training on IHTG 

and hepatic insulin sensitivity, exploring the mediating influence of weight loss. 

The principal findings of this thesis are that:  

1. In volunteers free from chronic metabolic disease and with normal glucose regulation, 

circulating FGF21 and LECT2 are higher in individuals with overweight or obesity 

compared to normal weight healthy controls (Chapter 4).  

2. In all these individuals, a single bout of CME elicits a transient increase in circulating 

FGF21 and follistatin (Chapter 4), but whilst the follistatin response is maintained in 

individuals with dysglycaemia, the response of FGF21 is abolished (Chapter 5).  

3. In a controlled, supervised environment, SIT is feasible for individuals with NAFLD and 

reduces IHTG without significant reduction in body weight. However, hepatic insulin 

sensitivity is unaffected by SIT and the response of peripheral insulin sensitivity is highly 

variable (Chapter 6).  

4. Whilst exercise training has the potential to reduce IHTG in the absence of weight loss, 

the greatest benefits are apparent when training is associated with significant reductions 

in body weight (Chapter 7). 

5. However, there is limited evidence examining the effects of exercise training on hepatic 

insulin sensitivity. The effects in the insulin-stimulated state (%EGPsupp) are particularly 

unclear, but exercise training may improve basal hepatic insulin sensitivity, as assessed 

using HISI (Chapter 7).  

This chapter discusses these findings collectively and, where appropriate, their impact on 

clinical practice. Some additional analyses are also presented, pooling hepatokine data from 

Chapters 4, 5 and 6, before potential directions for future investigations are highlighted. 
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8.2  Intrahepatic triglyceride 

The studies in Chapters 6 and 7 of this thesis demonstrate that supervised exercise training 

alone has the capacity to reduce IHTG in individuals with NAFLD. Importantly, whilst this 

may occur in the absence of significant weight loss, the magnitude of reduction in IHTG 

increases in direct proportion with the magnitude of weight loss elicited. It is important to note, 

however, that the reduction in IHTG with exercise training is modest, even when weight loss 

occurs.  

The systematic review and meta-analysis presented in Chapter 7 collated studies examining the 

effects of exercise training on IHTG in patients with NAFLD, restricting eligible studies to 

those using 1H-MRS. This restrictive inclusion criteria was a strength of the study in Chapter 

7 because 1H-MRS has much greater precision than alternative methods of assessment, such as 

US or CT, to assess small changes in IHTG. Furthermore, the use of a single common technique 

allowed estimates of the pooled effect to be presented in absolute units (% change in IHTG), 

rather than a standardised effect size. Of the studies identified in Chapter 7, the greatest 

reduction with exercise training was reported by Cuthbertson and colleagues, where 16 weeks 

of aerobic exercise training elicited a median absolute reduction in IHTG of 9.3% (Cuthbertson 

et al., 2016). However, when data from all eligible studies were pooled (total 373 patients with 

NAFLD), the mean reduction in IHTG over 1 to 24 weeks of exercise training was 

approximately two-thirds lower (3.3%). This pooled effect was increased in a subgroup 

analysis of studies reporting associated weight loss, but remained less than 5%. Moreover, the 

largest (n = 220) and longest study identified in Chapter 7 randomised individuals to one of 

two 12-month aerobic exercise interventions or a standard-care control (6-month data were 

used for quantitative data pooling; see Appendix X for justification) (Zhang et al., 2016). This 

study reported approximately 6.5 to 7% absolute reduction in IHTG at 12 months in both 

exercise groups (Zhang et al., 2016). 

The pooled mean baseline IHTG in Chapter 7 was approximately 16%, which was similar to 

that reported in the studies by Cuthbertson et al (17%) and Zhang et al (19%) (Cuthbertson et 

al., 2016; Zhang et al., 2016). Consequently, the magnitude of reduction in IHTG with exercise 

training alone (as outlined above) would be insufficient to bring the typical NAFLD patient 

below diagnostic criteria (5.56%) (Marchesini et al., 2016; Chalasani et al., 2018), at least 

within 12 months of training. Furthermore, many of the studies identified in Chapter 7 recruited 

individuals with relatively low disease severity and IHTG may be even higher in individuals 
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with advanced NAFLD. Accordingly, only one study in Chapter 7 reported a mean IHTG post-

training below 5.56% (Cassidy et al., 2016). The baseline IHTG of individuals in this study 

was comparatively lower (6.9%) than many of the other eligible studies in Chapter 7. 

Furthermore, in Chapter 6 of this thesis, only two of the nine participants reduced IHTG below 

5.56% after six weeks of SIT, and these individuals had pre-intervention IHTG of 5.8% and 

8.6%, respectively, which was much lower than the group mean of 14.4%. These data suggest 

that the independent effect of exercise training alone on IHTG is modest and unlikely to be 

sufficient to bring the majority of patients with NAFLD below clinical diagnostic criteria. 

The modest effect of exercise training on IHTG could be explained, at least in part, by the fact 

that the weight loss associated with exercise training alone is also low. For example, in the 

studies by Cuthbertson et al and Zhang et al, the mean relative reduction in body weight from 

pre- to post-training was 2.5% and 4%, respectively (Cuthbertson et al., 2016; Zhang et al., 

2016). In contrast, dietary energy restriction has the capacity to impart a much greater influence 

on daily energy balance and is thus associated with much greater reductions in body weight 

(Ross, Freeman and Janssen, 2000). Accordingly, dietary energy restriction in patients with 

NAFLD elicits much greater reductions in IHTG than that of exercise training (Petersen et al., 

2005; Villareal et al., 2011; Hickman et al., 2013; Washburn et al., 2014). For example, in 

patients with NASH, approximately 10% weight loss through dietary energy restriction reduces 

the number of hepatocytes affected by steatosis, determined by histological assessment of liver 

biopsy tissue, (from 73% to 23%; P = 0.04; n = 5) and this reduction is much greater than that 

of a matched group undergoing resistance exercise training without weight loss (71% to 54%, 

P = 0.12; n = 9) (Hickman et al., 2013). Furthermore, in patients with T2DM (mean baseline 

IHTG of 12%), daily energy restriction (total energy intake 1200 kcal per day) elicits 8% 

weight loss in just seven weeks and this is associated with an approximate 10% absolute 

reduction in IHTG (Petersen et al., 2005).  

Importantly, in Chapter 7, meta-regression analyses suggest that each 1% relative reduction in 

body weight through exercise training alone is associated with approximately 1% absolute 

reduction in IHTG. This relationship is similar to that shown previously with dietary 

restriction-induced weight loss (Petersen et al., 2005; Browning et al., 2011; Wong et al., 2013; 

Patel et al., 2015). Therefore, whilst the absolute independent effect of exercise training on 

IHTG may be modest, exercise-associated weight loss may contribute towards substantial 

reductions in IHTG, when combined with dietary energy restriction. The role of exercise type 

in modulating reductions in IHTG is discussed in more detail below (see Section 8.5). 
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8.3  Effects of exercise training beyond IHTG 

Given the dominance of energy restriction compared to exercise training in its potential to 

mediate energy balance and reduce IHTG, it is understandable that some individuals may 

consider the promotion of structured exercise as a lesser priority in patients with NAFLD. 

However, whilst weight loss remains a core component in the management of NAFLD (and 

many other chronic metabolic diseases), the importance of exercise should not be readily 

dismissed. Firstly, dietary approaches may not be tolerated or sustained by all individuals so, 

whilst less than optimal, exercise training may constitute the primary treatment approach for 

these patients (alongside pharmacological treatment of other associated co-morbidities). 

Secondly, exercise has several important benefits beyond its impact on body weight and IHTG, 

many of which are clinically relevant for patients with NAFLD (Garber et al., 2011; Fiuza-

Luces et al., 2013; Keating, George and Johnson, 2015).  

Exercise training elicits several beneficial effects on cardiovascular risk factors, such as 

improved endothelial function, reduced blood pressure and a more favourable circulating lipid 

profile (Garber et al., 2011; Pugh et al., 2014; Zhang et al., 2016). Whilst some of these benefits 

may not impact directly on the clinical severity of NAFLD per se, CVD remains the leading 

cause of death in patients with NAFLD, so reduction in cardiovascular risk is an important 

clinical outcome (Targher, Day and Bonora, 2010; Targher et al., 2016). In Chapter 6, 

circulating HDL was improved after six weeks of SIT in patients with NAFLD. There were no 

other statistically significant changes in circulating cardiovascular risk factors, but this may 

have been a result of the small sample size recruited. Exercise training has also been shown to 

improve cardiorespiratory fitness and physical function (Garber et al., 2011; Fiuza-Luces et al., 

2013; Keating, George and Johnson, 2015). Both of these benefits may mediate improvements 

in health-related quality of life (Gillison et al., 2009; Awick et al., 2015), whilst 

cardiorespiratory fitness remains a leading predictor of both cardiovascular and all-cause 

mortality (Blair et al., 1989; Kodama et al., 2009). This list is not exhaustive and an active 

lifestyle has several other benefits that are beyond the scope of discussion in this thesis. Notably, 

however, the potential psychosocial benefits of engaging in regular exercise and a physically 

active lifestyle should not be forgotten (Castellani et al., 2003; Cadmus-Bertram et al., 2014).   

Exercise training also improves glycaemic control and much of this benefit may be mediated 

by improvements in insulin sensitivity (Garber et al., 2011; Umpierre et al., 2011; Fiuza-Luces 

et al., 2013; Keating, George and Johnson, 2015). Insulin resistance is heavily implicated in 



~ 159 ~ 
 

the pathogenesis of NAFLD, with consequential hyperglycaemia, hyperinsulinaemia and 

hyperlipidaemia all factors contributing to the development of hepatic steatosis (Fabbrini, 

Sullivan and Klein, 2010; Birkenfeld and Shulman, 2014; Brouwers et al., 2016). However, 

insulin resistance is equally implicated in several other obesity-associated metabolic co-

morbidities, including T2DM, which are common in patients with NAFLD (Armstrong et al., 

2014; Byrne and Targher, 2015). As such, improved insulin sensitivity and glycaemic control 

are clinically important outcomes for patients with NAFLD. The effects of exercise training on 

tissue-specific insulin sensitivity in patients with or at risk of NAFLD were explored in 

Chapters 6 and 7 of this thesis. 

8.4  Insulin sensitivity 

The study presented in Chapter 6 examined the effects of a 6-week SIT intervention on 

peripheral and hepatic insulin sensitivity in patients with NAFLD. Hepatic insulin sensitivity 

in both the basal and insulin-stimulated states was unaffected by SIT, but there was a tendency 

for improved peripheral insulin sensitivity. The latter is assumed to be primarily reflective of 

improved insulin sensitivity in skeletal muscle. Chapter 7 collated existing published literature 

exploring the effects of exercise training on HISI and %EGPsupp in patients with or at high risk 

of NAFLD. This included the data reported in Chapter 6. Despite limited evidence however, 

particularly with regards to the effects of training on %EGPsupp, data pooling suggested that 

exercise training may improve HISI. 

In Chapter 6, the response of peripheral insulin sensitivity to training was highly variable and 

ranged from a 59% increase in one individual to an 18% reduction in another (mean 18% 

improvement). Six individuals demonstrated an improvement (minimum 11%), whilst the 

remaining two showed a decline (11% and 18%, respectively). Several reasons may be 

responsible for this variability, including genetic factors and baseline characteristics (Böhm et 

al., 2016). Furthermore, whilst (a) adherence to the training intervention was over 99%, (b) 

participants were instructed to make no changes to dietary habits and (c) no change in habitual 

physical activity was identified using hip-worn accelerometry, it cannot be discounted that 

variable responses may result from differences in participant motivation during training or 

compliance outside of the controlled environment. It should also be noted that the lack of 

response in some individuals may have been due to the short intervention duration and 

individuals showing no improvements after six weeks may have displayed an increase in 

peripheral insulin sensitivity had a longer intervention been utilised.  
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Improvements in peripheral insulin sensitivity will contribute to improved glucose tolerance 

and consequently lower postprandial hyperglycaemia and hyperinsulinaemia. In turn, lower 

circulating glucose and insulin may contribute to reductions in IHTG by reducing activation of 

ChREBP and SREBP-1c, respectively, thus lowering hepatic DNL (Yamashita et al., 2001; 

Ameer et al., 2014). Improved insulin sensitivity would also be of clinical benefit for many of 

the 22% of patients who have NAFLD and diabetes (particularly those with T2DM) (Younossi 

et al., 2016) and may also reduce the risk of T2DM incidence in those without (Balkau et al., 

2010; Sung, Wild and Byrne, 2013; Mantovani et al., 2018). 

As mentioned previously, very few studies (n = 3) have investigated the effect of exercise 

training on hepatic insulin sensitivity in the insulin-stimulated state. Furthermore, this evidence 

remains contradictory. One study reported an improvement in %EGPsupp after six weeks of 

aerobic exercise training (Shojaee-Moradie et al., 2007). However, it is notable that many of 

these individuals did not have NAFLD (median IHTG approximately 4%). The remaining two 

studies showed no effect of aerobic exercise or SIT on %EGPsupp (Cuthbertson et al. 2016; 

Sargeant et al. 2018; Chapter 6). The lack of studies exploring the effects of exercise 

on %EGPsupp may be the result, at least in part, of the technical expertise required to perform 

dual-step hyperinsulinaemic euglycaemic clamps with labelled glucose tracer, and the high 

financial cost. However, the results of the study in Chapter 6 and that of Cuthbertson et al 

(Cuthbertson et al., 2016) are in accordance with existing evidence demonstrating 

that %EGPsupp may become substantially impaired at a very low level of IHTG; possibly as 

low as 1.5% (Bril, Barb, et al., 2017). As such, in patients with NAFLD, a large reduction in 

IHTG, likely in association with substantial weight loss (see above), may be required to elicit 

improvements in insulin-stimulated hepatic insulin sensitivity. 

Whilst the number of studies investigating the effects of exercise training on HISI is also 

limited, there was sufficient data to perform a small meta-analysis. This analysis demonstrated 

that, when data were pooled, exercise training elicits approximately 13% improvement in basal 

hepatic insulin sensitivity. This was despite very few studies reporting a statistically significant 

benefit within individual manuscripts. Notably, the HISI index is made up of two components, 

EGP and circulating insulin, and improvements with exercise training may be realised by 

reductions in the latter. Very few studies reported a reduction in basal rates of EGP after 

exercise training. This might be expected, however, given that in most of the studies 

participants were not hyperglycaemic. As such, improvements in basal hepatic insulin 

sensitivity may not result in lower rates of EGP because, in many individuals, these were 
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already normal. However, the concentration of circulating insulin required to maintain these 

rates, and thus fasted euglycaemia, may be reduced. These findings are supported by previous 

literature demonstrating that, in contrast to the relationship with %EGPsupp, the relationship 

between IHTG and HISI may be linear (Korenblat et al., 2008). Thus, any reduction in IHTG 

(such as the small reductions seen with exercise) may elicit improvements in basal hepatic 

insulin sensitivity. 

8.5  Implementation of exercise training in the management of NAFLD 

The findings of Chapters 6 and 7 demonstrate that exercise training has an important role in 

the management of NAFLD but its implementation alongside dietary energy restriction, with 

the aim of reducing total body weight, may be required to elicit the greatest benefits. Given 

that weight loss appears to be a critical modulator of change in IHTG, and dietary energy 

restriction has a greater capacity to induce large amounts of weight loss than exercise alone 

(Browning et al., 2011; Wong et al., 2013; Patel et al., 2015), exercise training should not be 

considered a complete replacement to energy restriction for the majority of individuals. 

However, this does not mean that exercise training should be readily dismissed. Whilst the 

absolute effects may be smaller in comparison to energy restriction, the evidence from Chapters 

6 and 7 of this thesis suggests that exercise training may contribute to reductions in IHTG. 

Identifying the precise mechanisms underlying these benefits was beyond the scope of this 

thesis but existing evidence suggests that both weight-dependent and independent effects may 

play a role (Brouwers et al., 2016). It is also important to remember that exercise training 

provides a wide array of benefits to individuals with NAFLD beyond effects on IHTG (Garber 

et al., 2011). Some of these benefits, which include improved glycaemic control and other 

components of cardiovascular disease risk, are discussed in more detail below.  

Whilst the data presented in this thesis are novel, the promotion of a combined lifestyle 

intervention approach is not. In fact, the findings of this thesis support current guidelines for 

the management of NAFLD from the European Associations for the study of Liver (EASL), 

Diabetes (EASD) and Obesity (EASO), and the American Association for the Study of Liver 

Diseases (AASLD) (Marchesini et al., 2016; Chalasani et al., 2018). These guidelines endorse 

the promotion of structured exercise in conjunction with dietary energy restriction with the aim 

of reducing body weight by a minimum of 7-10%. Underpinning these guidelines is evidence 

that weight loss of at least 7% may be required to improve histological outcomes of NASH, in 

addition to reductions in IHTG (Promrat et al., 2010; Vilar-Gomez et al., 2015).  
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It is important to remember that, in similarity to pharmacological and surgical treatments, many 

forms of structured exercise exist and no ‘one size fits all’. Consequently, there is the need to 

develop a variety of sustainable, evidence-based exercise interventions in order to provide 

health care professionals with a range of safe, effective options when formulating a treatment 

plan for a given individual. Importantly, with the ever-increasing focus on personalised 

medicine and prominence of patient preferences at the centre of treatment plans, having 

multiple potential exercise interventions also gives patients the chance to explore several 

different approaches throughout the ongoing management of their chronic condition. Data from 

Chapter 7, demonstrating that greater reductions in IHTG are elicited with interventions of 

longer duration, support the need to identify effective, sustainable exercise interventions. 

The systematic review presented in Chapter 7 identified that aerobic and resistance exercise 

training, and several forms of HIIT (as well as combinations of two or more), have all been 

examined in individuals with NAFLD. Whilst the subgroup analysis performed in Chapter 7 is 

limited by the number of available studies, aerobic, HIIT and combined exercise training were 

each found to effectively reduce IHTG. These studies also include data presented in Chapter 6, 

where individuals with NAFLD were compliant with a SIT intervention involving repeated 

maximal exercise. However, the results of Chapter 7, along with previous reviews (Orci et al., 

2016), indicate that the greatest benefits on IHTG may be realised with aerobic exercise 

training and this may be mediated by a greater energy expenditure and subsequently greater 

potential for weight loss (Keating et al., 2012; Yumuk et al., 2015; Smart et al., 2016). 

Other studies (which did not utilise 1H-MRS and therefore were not eligible for the review in 

Chapter 7) have shown that resistance exercise training may also reduce IHTG in patients with 

NAFLD (Bacchi et al., 2013; Zelber-Sagi et al., 2014). A recent review suggested that 

resistance exercise training may, in fact, be an important option for individuals with low 

cardiorespiratory fitness, as it may elicit a reduction in hepatic steatosis at a lower energy 

consumption (Hashida et al., 2017). However, evidence for the direct benefits of resistance 

exercise training on hepatic outcomes in NAFLD remain inconclusive (Slentz et al., 2011; 

Hickman et al., 2013; Keating, George and Johnson, 2015). As previously discussed, however, 

patients with NAFLD will gain clinical benefits from factors beyond simply IHTG and 

resistance exercise may elicit many of these (Garber et al., 2011; Fiuza-Luces et al., 2013). 

Furthermore, evidence suggests that approximately one-third of weight loss may be attributed 

to the loss of metabolically and functionally important lean tissue mass (Heymsfield et al., 

2014; Weiss et al., 2017). Resistance exercise training may attenuate this loss of lean mass and 
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help achieve a more favourable composition of weight loss (Weiss et al., 2007; Villareal et al., 

2017). Resistance exercise has also been shown to elicit improvements in insulin sensitivity 

and glycaemic control (Garber et al., 2011; Hallsworth et al., 2011; Umpierre et al., 2011; 

Strasser et al., 2013). 

Collectively, the findings in Chapters 6 and 7 of this thesis demonstrate that, where possible, 

the greatest benefits for individuals with NAFLD may be realised when structured exercise 

training is combined with dietary energy restriction with the aim of reducing body weight by 

at least 7%. However, studies directly comparing dietary energy restriction alone with 

combined diet and exercise training on IHTG, insulin sensitivity and other outcomes of clinical 

relevance in NAFLD would be valuable. Aerobic exercise is strongly endorsed as part of a 

structured exercise intervention to contribute to weight loss and improve cardiorespiratory 

fitness, whilst a resistance exercise component is firmly advised to induce wider metabolic 

benefits, promote the preservation of lean mass and improve physical function. Importantly, 

however, treatment approaches should be configured around patient preferences, motivations 

and individual circumstances to encourage sustainable changes in lifestyle behaviours. 

Furthermore, clinically relevant outcomes in NAFLD beyond IHTG and insulin sensitivity 

should also be considered. 

8.6  Hepatokines 

As mentioned previously, IHTG and insulin resistance are highly associated and the magnitude 

of IHTG is strongly predictive of insulin resistance not only in the liver, but also in skeletal 

muscle and adipose tissues (Korenblat et al., 2008; Bril, Barb, et al., 2017). Insulin resistance 

is heavily implicated in the pathogenesis of both NAFLD and T2DM and it is therefore 

unsurprising that these conditions commonly co-exist (Williamson et al., 2011; Portillo 

Sanchez et al., 2015; Cusi et al., 2017). Individuals with both NAFLD and T2DM also have 

poorer prognosis (Vernon, Baranova and Younossi, 2011; Loomba et al., 2012; Lomonaco et 

al., 2016). In experimental rodent models, however, hepatic steatosis precedes the development 

of systemic insulin resistance during periods of high-fat overfeeding (Kraegen et al., 1991; 

Davis et al., 2010; Turner et al., 2013) and in humans the presence of NAFLD is an independent 

predictor of T2DM incidence (Balkau et al., 2010; Armstrong et al., 2014; Mantovani et al., 

2018). This evidence suggests that the relationships between NAFLD and glucose regulation 

in peripheral tissues may not be simply associational, but changes in liver metabolism with the 

development of hepatic steatosis may act to modulate metabolic processes in the periphery 
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(Meex and Watt, 2017). Consequently, there is increasing interest into the potential 

mechanisms that may mediate cross-talk between the liver and peripheral tissues with the 

secretion of  hepatokines proposed as one such mechanism (Stefan and Häring, 2013; 

Takamura, Misu and Kaneko, 2016; Meex and Watt, 2017). 

Many hepatokines exist (Meex et al., 2015), but five (FGF21, follistatin, fetuin-A, LECT2 and 

SeP) have been investigated in this thesis due to their reported influence on several aspects of 

glycaemic control (Misu et al., 2010; Camporez et al., 2013; Malin, Mulya, et al., 2013; Lan 

et al., 2014; Hansen, Rutti, et al., 2016). Specifically, FGF21 and follistatin have positive 

actions by augmenting insulin signalling, increasing pancreatic β-cell proliferation or 

promoting the synthesis of skeletal muscle (Gilson et al., 2009; Yaden et al., 2014; Zhao et al., 

2015; Hansen, Rutti, et al., 2016), whilst fetuin-A, LECT2 and SeP have deleterious effects on 

insulin signalling (Auberger et al., 1989; Srinivas et al., 1993; Misu et al., 2012; Lan et al., 

2014).  

Observational evidence in humans suggests that fasted concentrations of each of these 

hepatokines correlate with markers of insulin resistance, whilst all except follistatin correlate 

with adiposity (Chavez et al., 2009; Brix et al., 2010; Ishibashi et al., 2010; Misu et al., 2010; 

Yang, Hwang, et al., 2011; Mashili et al., 2011; Wu et al., 2012; Ismail et al., 2012; Ou, Yang, 

et al., 2012; Hansen et al., 2013; Okumura et al., 2013; Lan et al., 2014). Data presented in 

Chapter 4 of this thesis support these findings in part, with circulating concentrations of FGF21 

and LECT2 reportedly higher in individuals with overweight or obesity (but normal glycaemic 

control), compared to normoglycaemic normal weight individuals. Furthermore, circulating 

FGF21 and LECT2 were positively correlated with markers of adiposity and insulin resistance, 

and negatively with cardiorespiratory fitness (V̇O2 peak). 

The studies presented in this thesis recruited individuals with a range of adiposity and 

glycaemic control. In addition to the normal weight, overweight and obese normoglycaemic 

individuals recruited in Chapter 4, the studies in Chapters 5 and 6 recruited overweight or obese 

individuals with dysglycaemia (HbA1c 5.7 to 6.5%) and NAFLD (who were also moderately 

insulin resistant), respectively. By pooling data from each these chapters, there is the 

opportunity to explore further the relationships between circulating hepatokine concentrations 

and markers of adiposity or insulin resistance in a more diverse population than that of any 

single chapter. Details of pooled data analysis can be found in Appendix XII.  
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The results of these pooled analyses support previous evidence, including that from Chapter 4, 

demonstrating that circulating concentrations of FGF21, follistatin and fetuin-A are elevated 

in association with increased adiposity and/or insulin resistance, as well as other markers of 

chronic metabolic disease. Interestingly, all of these hepatokines are upregulated in states of 

excess lipid storage or impaired glycaemic control. Given that FGF21 and follistatin have been 

shown to exert beneficial effects on glucose and lipid metabolism (Camporez et al., 2013; 

Hansen, Rutti, et al., 2016), these increased concentrations may represent adaptive responses 

in attempts to attenuate the decline in metabolic regulation. Conversely, fetuin-A has been 

shown to impair insulin signalling and may, therefore, be implicated in disease pathogenesis. 

Pooled analyses also suggest that, despite correlating with indices of insulin resistance, fasted 

circulating concentrations of FGF21 may be influenced more by adiposity than glycaemic 

control. No differences were identified between overweight/obese individuals with 

normoglycaemia, dysglycaemia or NAFLD, but each of these groups had higher fasted plasma 

FGF21 than the normal weight individuals. This finding is supported by previous evidence 

demonstrating that, whilst FGF21 is elevated in individuals with T2DM, this may be the result 

of increased adiposity rather than impaired glycaemic control per se (Chavez et al., 2009; Mraz 

et al., 2009; Chen et al., 2011; Mashili et al., 2011). In contrast, follistatin and fetuin-A may 

only be elevated once a degree of metabolic dysregulation occurs as no differences were found 

between groups of normoglycaemic individuals irrespective of weight status. No previous 

study has identified independent relationships between markers of adiposity and circulating 

follistatin or fetuin-A. In fact, a study by Obuchi and colleagues found no difference in BMI 

between quartiles of fetuin-A in over 650 individuals (Obuchi et al., 2014). 

The primary aim of the studies in Chapters 4 and 5 of this thesis was to explore the effects of 

acute exercise on circulating hepatokine concentrations. These studies demonstrated that 

circulating concentrations of FGF21 and follistatin (but not LECT2, fetuin-A or SeP) are 

transiently elevated by a single bout of CME in both normal and overweight/obese individuals 

with normal glycaemic control (Chapter 4). However, only the follistatin response was 

maintained in individuals with dysglycaemia (Chapter 5), and a single bout of LV-HIIT did not 

affect circulating concentrations of any hepatokine measured in this thesis. Evidence suggests 

that the exercise response of FGF21 and follistatin to exercise may be mediated by changes in 

the glucagon to insulin ratio (Hansen et al., 2015; Hansen, Pedersen, et al., 2016; Hansen, Rutti, 

et al., 2016) and this is supported by data in Chapter 4. This mechanism may also explain 

differential responses between different groups of individuals, such as those with normal or 
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impaired glycaemic control. Unfortunately, glucagon was not measured in Chapter 5 and, 

therefore, the glucagon to insulin ratio could not be determined. Other mechanisms have also 

been implicated in the regulation of hepatokines, such as hepatic AMPK (Okumura et al., 2013; 

Lan et al., 2014) and circulating NEFA (Badman et al., 2007). In Chapter 4, circulating NEFA 

in the fasted state was higher in overweight/obese individuals, in accordance with higher 

FGF21 and LECT2. The response of circulating NEFA to acute exercise also mirrored that of 

FGF21. However, changes in systemic venous blood does not imply causality and more 

mechanistic studies containing the collection of hepatic and peripheral tissue samples and with 

isolation of the splanchnic circulation are required to directly investigate hepatokine regulation 

in humans. 

Circulating concentrations of FGF21, follistatin, fetuin-A and LECT2 were also analysed 

before and after individuals with NAFLD completed a 6-week SIT intervention, but no changes 

were identified (Chapter 6). These findings, as well as the null findings in Chapters 4 and 5, 

may have been the results of a lack of statistical power (discussed in more detail below). 

However, it should also be noted that this is a novel area of research, particularly with regards 

to the effects of acute and/or chronic exercise on fetuin-A, LECT2 and SeP. No studies have 

previously investigated the effects of acute exercise on fetuin-A or SeP, whilst the single study 

investigating LECT2 was conducted in mice and utilised a particularly large volume of exercise 

(three hours of forced treadmill running) (Lan et al., 2014). It could be, therefore, that 

hepatokine regulation differs between humans and rodent models or that the single bouts of 

exercise employed in Chapters 4 and 5 were simply insufficient to elicit a response. 

Collectively, the data presented in this thesis support suggestions that circulating hepatokines 

may be altered with the development of chronic metabolic diseases such as NAFLD and T2DM, 

which are both associated with increased adiposity and an insulin-resistant state (Stefan and 

Häring, 2013; Takamura, Misu and Kaneko, 2016; Meex and Watt, 2017). Furthermore, some 

of these hepatokines (FGF21 and follistatin) may be modulated transiently by perturbations in 

energy metabolism such as a single bout of exercise. These hepatokines may, therefore, have a 

role in metabolic regulation, being secreted from the liver as a signal of metabolic stress 

(Hansen and Plomgaard, 2016). Given that FGF21 and follistatin also elicit favourable 

metabolic effects in peripheral tissues, repeated increases in these hepatokines with regular 

exercise may be implicated in mediating the metabolic benefits of an active lifestyle. However, 

further studies exploring the associations between hepatokines and chronic metabolic disease 

in clinical populations are required. Specifically, longitudinal studies examining changes in 
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circulating hepatokines over time with the development (or reversal) of metabolic dysfunction 

would be of interest. Furthermore, of specific relevance to the work conducted in this thesis, it 

would be interesting to explore whether the acute hepatokine response to a single bout of 

exercise changes with repeated bouts over an extended period (i.e. exercise training), and 

whether any changes in this response, or in fasted concentrations, are associated with 

improvements in metabolic parameters such as IHTG or insulin sensitivity.  

It is important to acknowledge some limitations of the studies contained in this thesis. Firstly, 

the cross-sectional analyses presented in this thesis are exploratory and, as such, inferences 

remain speculative. Importantly, whilst the inclusion criteria for each experimental chapter of 

this thesis were varied in terms of weight status and glycaemic control, the pooled sample size 

remains small (n = 43) and most of these individuals were men (86%; n = 37). Moreover, all 

individuals recruited in this thesis were adults of white European ethnicity. Therefore, null 

findings may be the result of insufficient statistical power and these findings may not be 

generalizable to women, adolescents or children and different ethnic groups. Furthermore, the 

cross-sectional and correlational analyses presented in Chapter 4 and this General Discussion 

cannot be used to assess causality. Simple bivariate correlations were performed and many of 

the independent variables explored are strongly associated with one another. These analyses 

do not account for this shared variance and therefore the independent effects of the examined 

variables cannot be determined. Secondly, all hepatokine analyses conducted throughout this 

thesis were performed on plasma isolated from systemic venous blood. Cannulation of an 

antecubital vein is not optimal to assess changes in hepatokine secretion from the liver. 

Collection of systemic blood has been previously shown to be suitable to assess changes in 

FGF21 and follistatin after acute exercise (Hansen et al., 2011; Hansen, Pedersen, et al., 2016). 

However, the potential for changes in other circulating hepatokines (fetuin-A, LECT2 and SeP) 

to have been missed due to the location or timing of blood sampling cannot be dismissed. 

Finally, the hepatokine analyses presented may be limited by statistical power given that none 

of the studies reported in this thesis were formally powered to assess hepatokine outcomes. 

This may be particularly relevant for the data presented in Chapter 6. At the time of designing 

the studies in this thesis, there was very limited data available which investigated changes in 

circulating hepatokines with exercise. However, the data collected in this thesis may be used 

to inform future power calculations for larger studies in which changes in circulating 

hepatokines constitute the primary outcome. 
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Another interesting topic for discussion is that of adjusting for changes in plasma volume. In 

Chapter 4 of this thesis, the concentrations of all of our circulating biomarker outcomes 

(including hepatokines) were adjusted for changes in plasma volume; this was also the intention 

in Chapter 5 but large amounts of missing data for haematocrit and haemoglobin prevented this 

approach. The rationale for plasma volume adjustment during exercise studies comes from an 

observed haemoconcentration with exercise (Kargotich et al., 1998). As a result, changes in 

circulating concentrations of any given biomarker of interest may be due to changes in the 

plasma volume, rather than any change in biomarker production and secretion or clearance. 

This issue is, however, a widely debated one, with no definitive consensus currently apparent. 

One reasonable argument underlying the rationale not to adjust circulating biomarker 

concentrations, is that many homeostatic mechanisms appear to be based on the regulation of 

plasma biomarker concentration per se, regardless of any reason for change. For example, in 

individuals with normal glycaemic control, circulating glucose is regulated to a target 

concentration of approximately 4.5 mmol·L-1. 

It is interesting to note that repeating statistical analyses using unadjusted data from the study 

in Chapter 4 has no impact on the results for FGF21, follistatin or fetuin-A. However, when 

using unadjusted data, significant interactions between trial and time are apparent for LECT2 

(P = 0.002) and SeP (P < 0.001). In post-hoc tests LECT2 is significantly higher in the exercise 

trial at 1, 1.5 and 4 h (all P ≤ 0.03), whilst SeP is significantly greater in the exercise trial at 1 

h (P< 0.001) (Figure 8.1). Given that LECT2 and SeP are each associated with negative 

metabolic effects (Lan et al., 2014; Misu et al., 2010), an increase in these hepatokines after 

exercise is in contrast to that hypothesised in Chapter 4, and the physiological relevance or 

impact of these increased concentrations is currently unclear. The discrepancies between 

analyses performed on adjusted or unadjusted data do, however, highlight the important nature 

of this issue and the decision of which approach to take. In reality, the best approach may differ 

depending on any given biomarker of interest. When making this decision in future studies, 

researchers should consult the available literature to explore whether one approach or the other 

is more suitable in any given instance. If neither are, they may wish to present both adjusted 

and unadjusted data, or should at least be aware of the implications of the approach that they 

take. 
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Figure 8.1 Circulating concentrations of LECT2 and SeP during control and exercise 

trials in the combined population of Chapter 4, using data adjusted (a & c) or unadjusted 

(b & d) for changes in plasma volume. Meals were provided at 1.5 and 4 h. Exercise was 

performed between 0 and 1 h in the exercise trial only. Data presented as mean ± SEM. * 

indicates significant difference from control trial at the same time point (all P ≤ 0.03). 
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8.7  Future investigations  

Whilst accepting their limitations, the findings in Chapters 4 and 5 provide sufficient rationale 

to explore the interaction between exercise (acute and chronic) and circulating hepatokines 

further. Investigating responses in different populations is warranted and it would be interesting 

to explore the relationship between changes in circulating hepatokines and changes in IHTG in 

patients with NAFLD. Furthermore, in addition to the long-term modulation of circulating 

hepatokines with the development or treatment of chronic metabolic disease, there is growing 

interest into their acute and short-term (days to weeks) regulation. Extending the findings 

presented in Chapter 4, the effect of exercise intensity on acute hepatokine responses is 

currently being explored within our research group (Willis et al., 2018), as are the effects of 

other metabolic perturbations, such as short periods (1-7 d) of high-fat overfeeding (an abstract 

containing preliminary data has been submitted to BASES Conference 2018). 

Whilst the findings of Chapters 6 and 7 are interesting, analyses are limited to the effects of 

exercise training on IHTG and hepatic or peripheral insulin sensitivity. The impact of exercise 

on other clinical outcomes relevant to the development and management of NAFLD (as well 

as associated metabolic co-morbidities) would also be welcomed. Specifically, studies 

exploring the effects of exercise training on hepatic inflammation and fibrosis would be 

particularly valuable (Keating and Adams, 2016), as the development of these hepatic 

complications (i.e. advanced NAFLD) is associated with poorer clinical prognosis (Ekstedt et 

al., 2006; Söderberg et al., 2010; D. Kim et al., 2013; Younossi et al., 2016). It is also possible 

to quantify indices of hepatic lipid quality (saturated vs unsaturated) using magnetic resonance 

procedures, which may be linked to a greater likelihood of developing hepatic insulin resistance 

(Johnson et al., 2008). Furthermore, adipose tissue insulin sensitivity is heavily implicated in 

NAFLD, yet few studies have investigated the effects of exercise training on this outcome 

(Fabbrini et al., 2008; Korenblat et al., 2008; Lomonaco et al., 2012; Bril, Barb, et al., 2017).  

Multiple studies, including that presented in Chapter 6, have demonstrated that individuals with 

NAFLD are able to complete various HIIT protocols in a controlled laboratory environment 

and these are associated with significant reductions in IHTG. This is particularly encouraging 

given that high-intensity exercise may be important in protecting individuals from the advanced 

NAFLD (Kistler et al., 2011; Cho et al., 2015). However, the development of high-intensity 

exercise interventions that are implementable in a clinical setting is essential if HIIT is to have 

any long-term clinical application in NAFLD.  
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10.7  Appendix VII: Supplementary results for Chapter 4 

Table 10.1 Associations between fasted hepatokine concentrations and metabolic biomarkers. 

Corr: correlation coefficient (r or rho for Pearson’s and Spearman’s analysis, respectively; Data are analysed using parametric Pearson’s correlation 

analysis unless otherwise stated. * indicates non-parametric Spearman Rank correlation analysis used. # indicates data were log transformed prior 

to analysis. 

  Age Body 
mass  BMI BF%  WC Relative 

V̇O2 peak  TG NEFA FPI  
Fasted 
plasma 

glucagon 

HOMA
-IR 

Adipo-
IR AST ALT AST: 

ALT FGF21 

FGF21 
Corr.   0.74 0.71 0.68 0.76 -0.52 0.72 0.79  0.44#  0.70#     

P-
value  <0.001 <0.001 0.001 <0.001 0.01 <0.001 <0.001  0.04  <0.001     

LECT2 
Corr.  0.47* 0.49 0.60* 0.42* -0.53 0.55# 0.52* 0.64# 0.49# 0.66# 0.70# 0.44#   0.61* 

P-
value  0.03 0.02 <0.01 0.05 0.01 <0.01 0.01 0.001 0.02 0.001 <0.001 0.04   <0.01 

Follistatin 
Corr.    

 
          -0.43#  

P-
value    

 
          0.05  

Fetuin-A 
Corr. -0.50*   

 
            

P-
value 0.02   

 
            

SeP 
Corr.    

 
         -0.44#   

P-
value    

 
         0.04   
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10.8  Appendix VIII: Supplementary methods for Chapter 6 

10.8.1 Self-report alcohol intake questionnaire 
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10.8.2 Further details of accelerometry data collection and analysis 

To assess the impact of SIT on habitual physical activity levels, participants wore a tri-axial 

accelerometer (GT3x, Actigraph LLC, USA) for seven consecutive days in the week before 

study assessments. Participants were encouraged to wear the device at all times, with the 

exception of showering/bathing or other water-based activities such as swimming. Participants 

were provided with a diary (see below) to note any points at which they removed the device, 

waking and sleeping times, physical activity performed and whether days were work or non-

work days. Participants were free to remove the device overnight, but were asked to note this 

on the diary and to remove the device as late as possible and put it back on as soon as they 

woke up. Data processing methods have been described in-depth previously (Troiano et al., 

2008) and were facilitated using computer software (Kinesoft 3.3.80, USA). A period of 

monitoring was considered valid for analysis when data was available for at least 600 minutes 

of wear time on at least three days of the week. In all but one period of monitoring, data 

included at least one weekend day. Non-wear time was considered 60 minutes of consecutive 

zero counts, allowing for two minutes of interruption. The cut-points in counts per minute 

(CPM) that were used to determine different categories of activity are presented in Table 10.2. 

 

Table 10.2 Troiano cut-points for categories of physical activity in counts per minute 

using tri-axial accelerometry analysis 

 Sedentary 
Behaviour 

Light Physical 
Activity 

Moderate 
Physical 
Activity 

Vigorous 
Physical 
Activity 

Counts per 
minute < 100 100 to 2019 2020 to 5999 > 5999 



~ 246 ~ 
 



~ 247 ~ 
 

 



~ 248 ~ 
 

 



~ 249 ~ 
 

 



~ 250 ~ 
 

10.8.3 Full tracer calculations used in Chapter 6 

10.8.3.1 Basal EGP 

EGP was calculated using the following equations at both -20 and 0 min. The mean of the two 

values was then calculated and reported as basal EGP. 

APE = (TTRmeasured - TTRbaseline) / [1 + (TTRmeasured - TTRbaseline)] x 100 

Where APE = atoms percent excess, TTRmeasured = tracer to tracee ratio at timepoint of interest 

(-20 and 0 min samples) and TTRbaseline = tracer to tracee ratio at baseline (prior to tracer 

infusion). 

EGP (μmol·kg-1·min-1) = Ra = F / APE x 100 

Where F = the continuous tracer infusion rate (μmol·kg-1·min-1). 

 

10.8.3.2 EGP at low-dose insulin infusion: 

The following calculations were used to calculate EGP during low-dose insulin infusion: 

Tracer Racontinuous = {F – pV x [(C1 + C2) / 2] x [(APE2 – APE1) / (t2 – t1)]} 

[(APE1 + APE2) / 2] 

Where Racontinuous is the Ra contribution from the continuous tracer infusion (μmol·kg-1·min-1), 

pV is the fractional pool of distribution (a constant of 160mL·kg-1 was used in this study), C1, 

C2, APE1, APE2, t1 and t2 are glucose concentrations (mmol·L-1), enrichment (APE) and time 

(min) at consecutive timepoints of interest. 

Tracer Ravariable = TTRbag x GIR2 / [(TTR1 + TTR2) / 2] 

Where Ravariable is the Ra contribution from the tracer-spiked variable dextrose infusion 

(μmol·kg-1·min-1), TTRbag is the assumed TTR within the dextrose bags, GIR2 is the variable 

infusion rate at t2 (μmol·kg-1·min-1), and TTR1 and TTR2 are the TTR and t1 and t2 respectively. 

EGP (μmol·kg-1·min-1) = Racontinuous + Ravariable – GIR2 
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10.9  Appendix IX: Supplementary results for Chapter 6 

Table 10.3 Participant characteristics specific to those completing hyperinsulinaemic, 

euglycaemic clamps 

Anthropometry    

Age (years) 40 ± 7 

Body mass (kg) 102.1 ± 11.2 

BMI (kg.m-2) 31.5 ± 3.3 

Waist circumference (cm) 110.9 ± 8.0 

Body fat (%) 28.1 ± 2.5 

IHTG (%) 16.0 ± 8.8 

Metabolic Risk Factors    

Alcohol Intake (units.week-1)# 4 (3 – 10) 

Total Cholesterol (mmol.L-1) 4.74 ± 0.44 

HDL (mmol.L-1) 0.98 ± 0.23 

LDL (mmol.L-1) 2.70 ± 0.43 

Cardiorespiratory Fitness    

Absolute V̇Ȯ2 peak (L.min-1) 3.24 ± 0.44 

Relative V̇Ȯ2 peak (mL.kg-1.min-1) 32.0 ± 5.1 

Absolute PPO (W) 243 ± 44 

Relative PPO (W.kg-1)  2.40 ± 0.52 

Data presented as mean ± SD for n=8. #Data not normally distributed and thus presented as 

median (IQR). 
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Table 10.4 Participant characteristics specific to those for which full VAT and ScAT data 

are available 

Anthropometry    

Age (years) 42 ± 7 

Body mass (kg) 99.9 ± 7.7 

BMI (kg.m-2) 31.0 ± 2.5 

Waist circumference (cm) 110.0 ± 6.3 

Body fat (%) 28.4 ± 3.0 

IHTG (%) 14.2 ± 7.7 

Metabolic Risk Factors    

Alcohol Intake (units.week-1)# 4 (3 – 10) 

Total Cholesterol (mmol.L-1) 4.88 ± 0.63 

HDL (mmol.L-1) 0.98 ± 0.26 

LDL (mmol.L-1) 2.83 ± 0.65 

Cardiorespiratory Fitness    

Absolute V̇Ȯ2 peak (L.min-1) 3.24 ± 0.46 

Relative V̇Ȯ2 peak (mL.kg-1.min-1) 32.5 ± 4.6 

Absolute PPO (W) 241 ± 45 

Relative PPO (W.kg-1)  2.42 ± 0.48 

Data presented as mean ± SD for n=8. #Data not normally distributed and thus presented as 

median (IQR). 



~ 253 ~ 
 

10.10  Appendix X: Supplementary methods for Chapter 7 

10.10.1 Data extraction 

10.10.1.1 Imputation of the mean and standard deviation (SD) during data extraction 

When the variation of change from pre- to post-intervention was reported as standard error or 

confidence intervals, established statistical equations were used to convert these to SD. When 

only pre- and post-intervention data were available, the mean change and SD were imputed as 

previously reported (Higgins and Green, 2011), assuming a correlation coefficient for change 

in IHTG of 0.80 (Pugh et al., 2014; Hallsworth et al., 2015; Houghton et al., 2017). 

10.10.1.2 Data presented as median and interquartile range 

When original data were reported as median and interquartile range, the median change was 

extracted and used in place of the mean, whilst the IQR was divided by 1.35 as an estimate SD 

(Higgins and Green, 2011). A sensitivity analysis removing these studies suggested that using 

data in this manner had no substantial impact on the results reported. 

10.10.1.3 Converting data to a consistent unit of measurement 

Data presented in this meta-analysis are, as much as possible, presented in a consistent format 

using similar units of measurement. When IHTG was reported as the ratio between intracellular 

lipid and water (lipid:water), this was converted to liver fat fraction using the following 

calculation: 

(lipid:water) / [1+(lipid:water)] x 100 

In some cases, data were converted during extraction using conversion factors as follows: 

Insulin: 1 mU = 6 pmol 

Glucose: 1 mmol·L-1 = 18 mg·dL-1 

EGP: 1 µmol·kg-1·min-1 = 0.18 mg·kg-1·min-1 

When data were also normalised, such as when presenting aerobic capacity in ml·kg-1·min-1 

rather than L·min-1, the mean value for the whole study group at baseline was used. 
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10.10.1.4 Inclusion of subsets of participants 

When a paper reported one of the primary outcomes of this review in a subset of individuals 

(or when only a subset of individuals met the inclusion criteria), only these individuals were 

included. If descriptive data specific to this subset were available, they were extracted. If not, 

the sample size was adjusted to represent the subset of individuals but the mean descriptive 

data for the whole study population was used. This applies to the following studies: 

Cuthbertson et al., 2016 (Cuthbertson et al., 2016): only 19 individuals (ex: 12; con: 7) 

underwent hyperinsulinaemic, euglycaemic clamp and were thus included in HISI and 

percentage suppression of EGP analyses. 

Hickman et al., 2013 (Hickman et al., 2013): only nine of the 13 patients in the exercise 

group underwent post-training liver biopsy and were thus included in IHTG analyses. 

Furthermore, complete data to allow calculation of HISI were only available for 11 patients. 

Keating et al., 2015 (Keating et al., 2015): three separate exercise groups completing 

different exercise interventions were included in this study. One of these groups was 

ineligible as the mean baseline IHTG was < 5.56%. 

Langleite et al., 2016 (Langleite et al., 2016): only the dysglycaemic individuals had IHTG > 

5.56% at baseline. 

Meex et al., 2010 (Meex et al., 2010): Raw data was collected for the calculation of HISI. 

One participant was removed from analysis because no basal EGP data was available. 

Sargeant et al., 2018 (Sargeant, Bawden, et al., 2018): only eight of the nine participants 

completed hyperinsulinaemic, euglycaemic clamps and so only these participants were 

included in HISI and percentage suppression of EGP analyses. 

van der Heijden et al., 2010 (van der Heijden, Wang, Chu, Toffolo, et al., 2010): only seven 

individuals had NAFLD (defined as liver fat > 5.6%) and so only this subset was included 

in the hepatic steatosis analysis. All participants were included in the HISI analysis as 

NAFLD diagnosis was not an inclusion criterion for this outcome. 
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10.10.1.5 Inclusion of studies with multiple follow-up measurements 

One manuscript (Zhang et al., 2016) reported data after six months and 12 months of 

intervention  in two separate exercise groups. The interventions differed only during the first 

six months and, therefore, these data were extracted and used. 
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10.11  Appendix XI: Supplementary results for Chapter 7 

Table 10.5 Participant characteristics and outcome measures of studies assessing changes in IHTG (continued overleaf) 

Ref. 
 

Study Design 

Intervention 
Overview 

Participant Characteristics at Baseline Relative 
Change in 

Body Weight 
(%) 

Comments N  
(M/F) 

Age 
(years) 

BMI  
(kg•m-2) 

Body Fat 
(%) 

Aerobic 
Capacity 

(ml•kg-1•min-1) 

Baseline 
IHTG (%) Clinical Conditions 

Cassidy et al. 
(2016) 
 
RCT 

HIIT  

3 times per 
week for 12 
weeks. 

Ex: 12 (10/2) 

Con: 11 (8/3) 

61 ± 9 

59 ± 9 

31 ± 5 

32 ± 6 

35.4 (est.) 

39.6 (est.) 

21.8 ± 5.4 

20.3 ± 6.1 

6.9 ± 6.9 

7.1 ± 6.8 

Hepatic steatosis according 
to mean baseline measures. 

Diagnosed T2DM with stable 
control for ≥ 6 months. 

-1.1# 

1.1 

Reported medications: 
Metformin (Ex: n=7, Con: n=7) 
Statins (Ex: n=7, Con: n=6) 
Antihypertensives (Ex: n=3, Con: n=5) 

Cuthbertson 
et al. (2016) 
 
RCT 

Aerobic 

3 – 5 times 
per week for 
12 weeks. 

Ex: 30  
(23/7) 

Con: 20 
(16/4) 

50 
(46–58) 

52 
(46–59) 

30.6 
(29.0–32.9) 

29.7 
(28.0–33.0) 

30.4 
(25.9-32.1) 

31.0 
(26.5-37.7) 

23.7 
(21.7–27.8) 

32.2 
(20.9–25.6) 

19.4 
(14.6–36.1) 

16.0 
(9.6–32.5) 

Diagnosed NAFLD 

-2.5 
(-3.5 – -1.4)α,# 

0.2 
(-0.8–1.1) 

Notable exclusion criteria: 
T2DM and IHD 
Excessive weight loss during the course of the 
study 

Hallsworth et 
al. (2011) 
 
RCT 

Resistance 

3 times per 
weeks for 8 
weeks. 

Ex: 11 (NR) 

Con: 8 (NR) 

52 ± 13 

62 ± 7 

32.3 ± 4.9 

32.3 ± 4.8 

37 ± 8 

41 ± 6 

21.8 ± 3.8 

18.5 ± 5.2 

14.0 ± 9.1 

11.2 ± 8.4 

Clinically defined but non-
advanced NAFLD (defined 
as IHTG > 5% with NAFLD 
fibrosis score < -1.445). 

T2DM accepted provided 
diet and metformin 
prescription were stable for ≥ 
6 months. 

0.0 

0.6 

Notable exclusion criteria: 
Exogenous insulin therapy. 
IHD 
Weight loss > 2.5% during the study. 
Other: 
Exercise group were significantly younger than 
control (p < 0.05). 

Hallsworth et 
al. (2015) 
 
RCT 

HIIT 

3 times per 
week for 12 
weeks. 

Ex: 12 
(6/6) 

Con: 11 
(10/1) 

54 ± 10 

52 ± 12 

31.0 ± 4.0 

31.0 ± 5.0 

38.4 ± 6.4 

34.5 ± 7.0 

21.9 ± 6.2 

24.6 ± 5.7 

10.6 ± 4.9 

10.3 ± 4.4 

Clinically defined but non-
advanced NAFLD (defined 
as IHTG > 5% with NAFLD 
fibrosis score    < -1.445). 

Metformin accepted but 
participants with any other 
medication for T2DM were 
excluded. 

-1.6α,# 

0.0 
None 

Haus et al. 
(2013) 
 
Uncontrolled 
Intervention 

Aerobic 

Daily for 1 
week. 

Ex: 17 (NR) 54 ± 2 34.4 ± 1.0 NR 24.3 ± 1.5 19.4 ± 3.3 Diagnosed NAFLD. 0.2 
Notable exclusion criteria: 
T1DM,T2DM and CVD 
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Hickman et 
al. (2013) 
 
RCT* 

Resistance 

3 times per 
week for 24 
weeks. 

Ex: 9 (7/2) 48 ± 9 33.6 ± 5.8 38.8 ± 7.6 21.6 ± 7.3 71 ± 32† 
Diagnosed NAFLD. 

85% met diagnostic criteria 
for NASH. 

-2.6 ± 4.65 

Notable exclusion criteria: 
Diabetes 
Alcohol consumption > 40 and 20 g•day-1 for 
men and women respectively. 

Houghton et 
al. (2017) 
 
RCT 

Combined 
(HIIT + 
Resistance) 

3 times per 
week for 12 
weeks. 

Ex: 12 (7/5) 

Con: 12 (7/5) 
54 ± 12 

51 ± 16 

33.0 ± 7.0 

33.0 ± 5.0 
NR 

25.0 ± 8.0 

21.0 ± 5.0 

12.0 ± 9.0 

10.0 ± 5.0 

Histologically characterised 
NASH with NAFLD activity 
score ≥ 5. 

1.1 

1.1 

Notable exclusion criteria: 
≥60 minutes moderate-vigorous physical 
activity per week 
Insulin sensitising treatments 
Cardiac or renal diseases. 

Johnson et al. 
(2009) 
 
RCT 

Aerobic 

3 times per 
week for 4 
weeks. 

Ex: 12 (NR) 

Con: 7 (NR) 

49 ± 8 

47 ± 10 

32.2 ± 2.8 

31.1 ± 2.9 
NR 

25.9 ± 4.8 

25.0 ± 4.2 

8.6 ± 8.6 

9.2 ± 10.1 

Hepatic steatosis according 
to mean baseline measures. 

Hypertension allowed. 

-0.3 

-0.2 

Notable exclusion criteria: 

Lipid lowering medications 

FPG ≥ 7.0 mmol•L-1   

Reported medications: 

Anti-hypertensive medications (n=5) 

Note – medications were unaltered for the 
duration of the study except when participants 
refrained for 72 hours prior to study 
assessments. 

Keating et al. 
(2015) 
 
RCT 

Aerobic 

3-4 times per 
week for 8 
weeks. 

Ex1(HI:LO): 
12 (6/6) 

Ex2(LO:HI): 
11 (5/6) 

Con: 12 (3/9) 

44 ± 10 

45 ± 9 

39 ± 10 

36.3 ± 5.9 

34.0 ± 3.1 

32.2 ± 4.8 

NR 

21.9 ± 4.8 

24.5 ± 3.0 

21.7 ± 6.2 

8.4 ± 5.2 

9.4 ± 6.6 

7.7 ± 9.0 

Hepatic steatosis according 
to mean baseline measures. 

-1.2α,# 

-1.5α,# 

0.9a 

Notable exclusion criteria: 

Reported exercise on >3 days per week. 

Lipid-lowering or insulin-sensitizing 
medications. 

Langleite et 
al. (2016) 
 
Uncontrolled 
Intervention 

Combined 
(Aerobic + 
HIIT + 
Resistance) 

4 times per 
week for 12 
weeks 

Ex: 11 (11/0) 53 (10) 27.8 (5.3) NR 38.7 (8.1) 11.0 (11.9) 

Hepatic steatosis according 
to mean baseline measures 

Dysglycaemic according to 
OGTT performed during 
screening. 

-1.2 

Notable exclusion criteria: 

Structured exercise performed > once per week 

Hypertension, other liver or kidney diseases, 
chronic inflammatory disease or medications 
known to affect glucose metabolism. 

Malin et al. 
(2013) 
 
Uncontrolled 
Intervention 

Aerobic 

Daily for 1 
week. 

Ex: 13 (6/7) 51 ± 12 33.3 ± 3.2 NR 24.9 ± 5.4 23.1 ± 14.8 
Hepatic steatosis confirmed 
during baseline measures 
(defined as > 5% IHTG). 

0.6 None 
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Oh et al. 
(2014) 
 
Uncontrolled 
Intervention 

Acceleration / 
Vibration 

3 times per 
week for 6 
weeks. 

Ex: 18 (4/14) NR 
28.2 

(25.5–33.2) 
NR NR 

12.2 
(5.4–20.6) 

Diagnosed NAFLD by 
medical history, serum ALT 
and ultrasound. Confirmed 
by baseline IHTG > 5%. 

-0.4α None 

Pugh et al. 
(2014) 
 
RCT 

Aerobic 

3 – 5 times 
per week for 
16 weeks. 

Ex: 13 (7/6) 

Con: 8 (4/4) 

50 ± 3 

47 ± 5 

30.0 ± 0.8 

30.0 ± 2.0 
NR 

26.4 ± 2.3 

27.0 ± 2.8 

21.3 ± 12.8 

19.2 ± 6.1 

Clinically diagnosed NAFLD 
defined as IHTG ≥ 5.5%  

Individuals taking anti-
hypertensive medications 
were allowed. 

-2.4 ± 2.0 

-1.1 ± 2.0 

Notable exclusion criteria: 
Any form of structured exercise or > 2 hours of 
low-intensity physical activity per week. 
T2DM, IHD, habitual smokers. 
Reported medications: 
Anti-hypertensive medications (Ex: n=9)  
Note - medications were unaltered throughout 
the duration of the study. 

Sargeant et 
al. (2018) 
 
Controlled 
Longitudinal 
Intervention 

HIIT 

3 times per 
week for 6 
weeks. 

Ex: 9 (9/0) 41 ± 8 31.7 ± 3.1 28.7 ± 3.0 31.8 ± 4.8 15.6 ± 8.3 

NAFLD defined as IHTG ≥ 
5.56 percent in the absence 
of reported secondary causes 
as determined during 
participant screening. 

-1.2 

Participants were weight stable 
Notable exclusion criteria: 
Any form of diagnosed metabolic disease or 
taking medication known to influence lipid 
metabolism or glycaemic control. 

Sullivan et al. 
(2012) 
 
RCT 

Aerobic 

5 times per 
week for 16 
weeks. 

Ex: 12 (4/8) 

Con: 6 (1/5) 

49 ± 8 

48 ± 8 

37.1 ± 3.8 

40.0 ± 5.4 

38.9 ± 2.1 

42.5 ± 3.6 

22.8 ± 4.5 

18.5 ± 7.1 

20.2 ± 14.6 

21.4 ± 21.6 
NAFLD defined as IHTG > 
10%. 

-0.2a 

0.2a 

Notable exclusion criteria: 
T2DM or plasma TG > 400mg•dL-1. 
Not weight-stable (> 3kg weight change in 
previous three months). 
Self-reported exercise > 1 hour per week. 

van der 
Heijden et al. 
(2010a)‡ 
 
Uncontrolled 
Intervention 

Aerobic 

4 times per 
week for 12 
weeks. 

Ex: 15 (7/8) 16 ± 2 33.7 ± 4.3 38.3 ± 5.8 26.8 ± 6.3 9.0 ± 12.0 
Hepatic steatosis according 
to mean baseline data. -0.5 

All participants were post-pubertal. 
Participants were obese for ≥5 years and 
weight stable for ≥ 6 months. 
Notable exclusion criteria: 
Participation in organised school athletic 
programme or ≥ 45 minutes self-reported light 
to moderate physical activity. 
Any form of metabolic disease. 
Any medication (including contraceptives). 
1st degree relatives with diabetes. 
Morbid obesity (>50% body fat). 
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van der 
Heijden et al. 
(2010b) 
 
Uncontrolled 
Intervention 

Resistance 

2 times per 
week for 12 
weeks. 

Ex: 7 (NR) 16 ± 1 35.3 ± 1.9 42.6 ± 5.3 NR 13.9 ± 11.4 

Hepatic steatosis according 
to mean baseline measures 
but no formal diagnosis of 
NAFLD reported. 

2.6α 

All participants were post-pubertal. 
Participants were obese for ≥5 years and 
weight stable for ≥6 months. 
Notable exclusion criteria: 
Participation in any organised school athletic 
programme or ≥ 45 minutes self-reported light 
to moderate physical activity. 
Any form of metabolic disease. 
Any medication (including contraceptives). 
1st degree relatives with diabetes. 
Morbid obesity (>50% body fat). 

Zhang et al 
(2016) 
 
RCT 

Aerobic 

5 times per 
week for 24 
weeks. 

Ex1(Mod): 73 
(22/51) 

Ex2(Vig): 73 
(21/52) 

Con: 74 
(28/46) 

54 ± 7 

53 ± 7 

54 ± 7 

28.1 ± 3.3 

27.9 ± 2.7 

28.0 ± 2.7 

33.5 ± 5.5 

34.8 ± 5.3 

33.7 ± 7.1 

NR 

18.0 ± 9.9 

18.4 ± 9.9 

17.5 ± 11.0 

NAFLD diagnosed initially 
by ultrasound and the 
confirmed by 1H-MRS 
during screening 

-2.8 α,# 

-6.0 α,# 

-2.1 α, 

Notable exclusion criteria: 
History of other chronic liver diseases, 
hypertension, chronic kidney disease, 
hyperthyroidism, myocardial infarction (within 
6 month) or heart failure. 
Participation in weight loss programmes 

Data presented as mean ± SD or median (IQR); Sample sizes represent the number of individuals entered into analyses; *Study did not include 

‘standard care’ or ‘no intervention’ group. Patients were randomised to either exercise or dietary interventions; † Liver biopsy used. This number 

represent the percentage of hepatocytes affected by steatosis; ‡ Manuscript refers to same study as van der Heijden et al (2009); α significant 

difference from baseline (P < 0.05); # significant interaction between exercise and control groups (P < 0.05). 
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Table 10.6 Participant characteristics and outcome measures of studies assessing changes in HISI and %EGPsupp (continued overleaf) 

Ref. 
Study Design 

Intervention 
Overview 

Participant Characteristics at Baseline 

Comments N  
(M:F) 

Age 
(years) 

BMI  
(kg•m-2) 

Body Fat 
(%) 

Aerobic 
Capacity 
(ml•kg-

1•min-1) 

Fasted 
Glucose 

(mmol•L-1) 

Fasted 
Insulin 

(µU•mL-1) 

HISI 
(mg•m-2•min-1 
per µU•mL-1)  

EGP 
suppression 

(%) 

Clinical 
Conditions 

Cuthbertson  
et al. (2016) 
 
RCT 

Aerobic 

3 – 5 times 
per week for 
12 weeks. 

Ex: 12 
(8/3/1NR) 

Con: 7 
(3/4) 

44 ± 13 

50 ± 12 

31.0 ± 2.3 

29.0 ± 3.2 

30.4 
(25.9-32.1) 

31.0  
(26.5-37.7) 

28.1 ± 7.2 

24.2 ± 11.3 

4.79 ± 0.42 

4.84 ± 0.64 

17.4 ± 11.1 

13.4 ± 4.9 

1.11 ± 0.60 

1.00 ± 0.58 

50.1 ± 20.2 

46.5 ± 27.3 
Diagnosed 
NAFLD. 

See Table 4.2 for Notable exclusion 
criteria 

Insulin Dose and Infusion Duration: 

0.3 mU•kg-1•min-1 for 120 minutes. 

Potential Confounding Variables: 

Significant reduction in body weight 
and IHTG in the exercise group. 

Hickman et 
al. (2013) 
RCT* 

Resistance 

3 times per 
week for 24 
weeks. 

Ex: 13 (9/4) 50 ± 9 33 ± 6 39 ± 8 NR 5.5 ± 0.5 24 ± 22 0.85 ± 0.61 Not 
Measured 

Diagnosed 
NAFLD. 

85% met 
diagnostic 
criteria for 
NASH 

See Table 4.2 for Notable exclusion 
criteria 
NOTE: %EGPsupp was reported at 
high-dose insulin infusion (1 mU•kg-

1•min-1) and was improved by exercise 
training.  

Lee et al. 
(2013) 
 
RCT 

Ex 1:  
Aerobic 

Ex 2: 
Resistance 

3-4 times per 
week for 8 
weeks. 

Ex1:  
16 (0/16) 

Ex2:  
16 (0/16) 

Con:  

12 (0/12) 

15 ± 2 

15 ± 2 

15 ± 2 

32.9 ± 3.8 

36.4 ± 3.8 

35.3 ± 4.0 

47.8 ± 4.2 

51.5 ± 4.7 

51.3 ± 3.5 

28.5 ± 3.8 

24.3 ± 4.3 

23.9 ± 3.0 

5.18 ± 0.33 

5.24 ± 0.38 

5.39 ± 0.32 

28.6 ± 16.5 

45.8 ± 22.0 

31.1 ± 15.3 

24.2 ± 12.2† 

16.5 ± 10.5† 

22.9 ± 14.4† 

Not 
Measured 

None 
reported. 

Notable exclusion criteria: 

Endocrine disorders (PCOS, T2DM) 

Medication known to influence 
glucose metabolism or body 
composition. 

Potential Confounding Variables: 

No change in body weight in either 
group.  

IHTG significantly reduced in aerobic 
exercise group only. 
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Meex et al. 
(2010) 
 
Uncontrolled 
Intervention 

Combined 
(Aerobic + 
Resistance) 

3 times per 
week 

(2 Aerobic, 1 
Resistance) 
for 12 weeks. 

 

Ex1: 20 
(20/0) 

Ex2: 17 
(17/0) 

59 ± 1 

59 ± 1 

29.7 ± 3.6 

30.0 ± 3.4 

31.5 ± 1.4 

31.1 ± 1.4 

28.8 ± 4.5 

27.5 ± 5.1 

5.90 ± 0.45 

9.00 ± 1.70 

18.1 ± 10.7 

17.0 ± 5.3 

1.1 ± 0.5 

0.8 ± 0.3 
Not 
Measured 

Ex1: None 
reported. 

Ex2: T2DM 
diagnosed for 
at least 1 year 
prior to study 
participation 

Notable exclusion criteria: 

Cardiac disease, impaired liver or 
renal function, BMI > 35kg•m-2. 

Exogenous insulin therapies. 

Medications: 

All T2DM participants were on oral 
antidiabetic agents.  

Medication was unchanged 
throughout the duration of the study 
but discontinued for 7 days prior to 
each clamp assessment. 

Potential Confounding Variables: 

No change in body weight in either 
group.  

IHTG not measured. 

Sargeant et 
al. (2018) 
 
Controlled 
Longitudinal 
Intervention 

HIIT 

3 times per 
week for 6 
weeks. 

Ex: 8 (8/0) 40 ± 7 31.5 ± 3.3 28.1 ± 2.5 32.0 ± 5.1 4.7 ± 0.3 17.6 ± 4.5 0.68 ± 0.20 59.9 ± 17.4 

NAFLD 
defined as 
IHTG ≥ 5.56 
percent in the 
absence of 
reported 
secondary 
causes as 
determined 
during 
participant 
screening. 

See Table 4.2 for Notable exclusion 
criteria 

Insulin Dose and Infusion Duration: 

20 mU•m-2•min-1 for 120 minutes. 

Potential Confounding Variables: 
No change in body weight.  
IHTG significantly reduced from pre- 
to post-training. 
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Shojaee-
Moradie et al. 
(2007) 
 
RCT 

Aerobic 

3 times per 
week for 6 
weeks. 

Ex: 10 
(10/0) 

Con: 7 
(7/0) 

47 ± 9 

55 ± 11 

27.6 ± 1.9 

27.6 ± 2.4 

25.6 (est.) 

24.4 (est.) 

31.0 ± 3.2 

27.0 ± 5.3 

NR 

NR 

10.6 ± 6.3 

11.4 ± 7.6 

2.09 ± 1.03 

1.91 ± 0.87 

57.0 ± 15.1 

62.0 ± 18.9 
None 
reported. 

Notable exclusion criteria: 

T2DM, hyperlipidaemia 

Lipid-lowering medications 

Those already engaged in regular 
physical activity.  

Insulin Dose and Infusion Duration: 

0.3 mU•kg-1•min-1 for 120 minutes. 

Potential Confounding Variables: 

No change in either body weight or 
IHTG in either group. 

van der 
Heijden et al. 
(2009)‡ 
 
Uncontrolled 
Intervention 

Aerobic 

4 times per 
week for 12 
weeks. 

Ex: 15 (7/8) 16 ± 2 33.2 ± 3.5 38.3 ± 5.8 27.5 ± 6.3 5.0 ± 0.4 20.2 ± 9.6 0.87 ± 0.43 Not 
Measured 

Hepatic 
steatosis 
according to 
mean baseline 
measures. 

See Table 4.2 for Notable exclusion 
criteria 

Potential Confounding Variables: 
No change in body weight.  
IHTG not measured. 

van der 
Heijden et al. 
(2010b) 
 
Uncontrolled 
Intervention 

Resistance 

2 times per 
week for 12 
weeks. 

Ex: 12 (6/6) 16 ± 2 35.3 ± 2.4 42.6 ± 5.3 NR 5.10 ± 0.35 23.0 ± 6.4 0.63 ± 0.18 Not 
Measured 

Hepatic 
steatosis 
according to 
mean baseline 
measures. 

See Table 4.2 for Notable exclusion 
criteria 

Standardisation: 

Post-intervention assessments were 
performed 3 days after the final 
exercise training session. 

Potential Confounding Variables: 
Body weight significantly increased 
from baseline. Much of this was 
accounted for by an increase in LBM.  
IHTG not measured. 

Data presented as mean ± SD or median (IQR); Samples sizes represent the number of individuals entered into analyses; *Study did not include 

‘standard care’ or ‘no intervention’ group. Patients were randomised to either exercise or dietary interventions; † HISI presented as mg•kg-1•min-1 

per µU•mL-1; ‡ Manuscript refers to same study as van der Heijden et al (2010a); # baseline values not reported and unavailable upon request. 
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Table 10.7 Intervention characteristics of all included studies (continued overleaf) 

Ref. 
Study Design 

Exercise 
Type 

Intervention 
Duration 

Session 
Frequency Details of Exercise intervention Exercise Supervision 

Instructions to Control 
Groups / Details of 

Placebo Intervention 
Other Instructions 

Cassidy  
et al. (2016) 
 
RCT 

HIIT 12 weeks 3 times per 
week 

Sessions consisted of 5 cycling intervals at an intensity 
equating to ‘very hard’ (16-17) on a Borg RPE scale.  

Interval length progressed by 10 seconds per week from 
2 minutes in week 1 to 3 minutes 50 seconds by week 
12. 

Intervals were interspersed with 3 minutes consisting of 
90 seconds passive recovery, 60 seconds upper body 
resistance band exercise and 30 seconds preparation for 
the subsequent interval. 

The initial exercise session was 
supervised by a member of the 
research team after which 
instructions were provided via 
voice-recordings loaded onto an 
iPod (Apple, CA, USA).  

Adherence was monitored via 
exercise diaries. 

Continued standard 
care. 

Participants were instructed to 
continue their normal routine and 
medical care, making no changes to 
diet, habitual activity or medication. 

Cuthbertson  
et al. (2016) 
 
RCT 

Aerobic 12 weeks 3 – 5 times 
per week 

Participants were given the choice of exercising on a 
treadmill, cross-trainer, cycle ergometer or rower.  

Intensity increased from 30% HRR at week 1 to 60% 
HRR by week 12.  

Frequency and duration progressed from 30 minutes, 3 
times per week during week 1 to 45 minutes, 5 times 
per week by week 12. 

One session per week was 
supervised by a trained exercise 
physiologist.  

The remaining sessions 
monitored via Wellness System™ 
(Technogym U.K. Ltd.) or by 
repeated telephone/email contact. 

Education and advice 
about the health 
benefits of exercise in 
NAFLD. 

Participants in the exercise groups 
were instructed to make no dietary 
modifications (confirmed by 3-day 
self-report food diaries) 

To avoid disturbance to behaviour, 
participants in the control group 
were given no instructions regarding 
diet or lifestyle. 

Hallsworth  
et al. (2011) 
 
RCT 

Resistance 8 weeks 3 times per 
week 

Sessions consisted of 8 whole-body exercises targeting 
large muscle groups performed as a circuit.  

Sessions progressed from 2 circuits at 50% 1RM during 
week 1 to 3 circuits at 70% 1RM by week 7.  

Participants were encouraged to increase the resistance 
each week if possible. 

Sessions were supervised 
biweekly.  
Heart rate was recorded during 
every session and exercise logs 
were completed to monitor 
adherence. 

Continued standard 
care. None reported 

Hallsworth et 
al. (2015) 
 
RCT 

HIIT 12 weeks 3 times per 
week 

Sessions consisted of 5 intervals on a cycle ergometer at 
an intensity equating to ‘very hard’ (16-17) on a Borg 
RPE scale.  

Interval length progressed by 10 seconds per week from 
2 minutes in week 1 to 3 minutes 50 seconds by week 
12. 

Intervals were interspersed with 3 minutes consisting of 
90 seconds passive recovery, 60 seconds upper body 
resistance band exercise and 30 seconds preparation for 
the subsequent interval. 

The first 2 exercise sessions were 
supervised by members of the 
research team after which 
instructions were provided via 
voice-recordings loaded onto an 
iPod (Apple, CA, USA).  

Exercise diaries were completed 
and reported completion of 33 out 
of 36 prescribed sessions was 
considered ‘adequate adherence’. 

Continued standard 
care. 

 

Participants were instructed to 
continue their normal routine and 
medical care, making no changes to 
diet, habitual activity or medication. 

Participants were asked to monitor 
and maintain body weight within 
1% of baseline. 
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Haus et al. 
(2013) 

Uncontrolled 
Intervention 

Aerobic 1 week 7 consecutive 
days 

Sessions lasted 50-60 minutes consisting of 40-50 
minutes of walking or running on a treadmill at 80-85% 
HRmax with appropriate warm-up and cool-down. 

All exercise sessions were 
supervised by an exercise 
physiologist. 

N/A 
Participants were instructed to 
maintain normal dietary habits and 
habitual physical activity. 

Hickman et 
al. (2013) 
 
RCT* 

Resistance 24 weeks 3 times per 
week 

Circuit-based sessions consisting of 15 moderate-
intensity (50% 1RM) resistance exercise covering the 
main muscle groups. Each exercise was performed for 
30 seconds with 30 seconds rest, during which 
participants moved to the next exercise. 

Sessions consisted of 1 circuit (12 min) during week 1 
and progressed to 5 circuits (60 min) by week 12. 

1RM was re-assessed every 4 weeks. 

All exercise sessions were 
supervised NA 

There were no prescribed dietary 
changes for the exercise intervention 
group. 

Houghton et 
al. (2017) 
 
RCT 

Combined 
(HIIT + 
Resistance) 

12 weeks 3 times per 
week 

A short HIIT session was performed made up of a 5 
minute warm-up followed by 3 x 2 minute intervals at 
an intensity equating to ‘very hard’ (16-18) on a Borg 
RPE scale. 

Intervals were interspersed with 1 minute rest.  

This was immediately followed by a resistance exercise 
circuit that comprised of 5 whole-body exercise 
targeting large muscle groups.  

Participants lifted a weight that equated to an RPE of 
14-16 (‘hard’). 

All exercise sessions were 
supervised by an accredited 
exercise specialist and recorded 
to ensure adherence. 

Continued standard 
care with maintenance 
of baseline weight. 

Participants were instructed to 
maintain normal dietary habits and 
habitual physical activity. 

Johnson et 
al. (2009) 
 
RCT 

Aerobic 4 weeks 3 times per 
week 

Each session lasted 30-45 minutes consisting of 15 
minute bouts of cycling with 5 minute recovery periods.  

Intensity was increased from 50% of pre-training V̇O2 
peak during week 1 to 60% in week 2 and 70% in 
weeks 3 and 4. 

All exercise sessions were 
supervised 

30 minute home-based 
whole-body stretching 
routine. 

Participants were instructed to 
maintain habitual diet throughout 
the study.  

24 hour food records were collected 
on the first and final three training 
sessions. 
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Keating et al. 
(2015) 
 
RCT 

Aerobic 8 weeks 

Ex1 (HI:LO):  

3 sessions per 
week 

Ex2 (LO:HI): 

4 sessions per 
week 

Ex1 (HI:LO): 2 laboratory-based cycling sessions and 1 
home-based brisk walking session per week all at the 
same intensity and duration. The programme progressed 
as follows: 

Week 1: 45 minutes at 50% V̇O2 peak. 
Week 2: Individual progression. 
Weeks 3-8: 60 minutes at 50% V̇O2 peak. 

Ex2 (LO:HI): 3 laboratory-based cycling sessions and 1 
home-based brisk walking session per week all at the 
same intensity and duration. The programme progressed 
as follows: 

Week 1: 30 minutes at 50% V̇O2 peak. 
Week 2: Individual progression. 
Weeks 3-8: 45 minutes at 70% V̇O2 peak. 

All laboratory exercise sessions 
were supervised by an accredited 
exercise physiologist.  

Adherence was 90, 96 and 94% in 
the HI:LO, LO:HI and control 
groups respectively. 

Stretching, self-
massage and ‘fitball’ 
programme. 1 session 
per week were 
performed in the 
laboratory and the 
remaining 2 at home. 

During the one 
supervised laboratory 
session participants 
performed 5 min of 
cycling 30 W to 
maintain ergometer 
familiarity. 

Participants were instructed to 
maintain habitual diet throughout 
the study.  

Participants completed 24 hour food 
records on 3 non-exercise days at 
baseline and during the final week 
of the intervention  

Participants also wore a tri-axial 
accelerometer for 2 weeks before 
and after the intervention. 

Langleite et 
al. (2016) 

 

Uncontrolled 
Intervention 

Combined 
(Aerobic + 
HIIT + 
Resistance) 

12 weeks 3 times per 
week 

Participants completed two whole-body strength 
training sessions and two sessions on a spinning bike 
per week.  

One bike session consisted of aerobic intervals for 
seven minutes at 85% HRmax with three minutes rest of 
active recovery against a light load between intervals. 
Participants completed three intervals in week one, four 
in weeks two-to-five and five from week six onwards. 

The second session consisted of two minute intervals 
at > 90% HRmax with two minutes rest of active 
recovery against a light load between intervals. 
Participants completed six intervals in week one, seven 
in weeks two-to-five and ten from week six onwards.  

All exercise sessions were 
supervised 

Mean attendance was 90%. 
N/A Participants recorded habitual diet 

before and after the intervention. 

Lee et al. 
(2013) 
 

RCT 

Ex1: Aerobic 

Ex2: 
Resistance 

13 weeks 3 times per 
week 

Ex1: Aerobic exercise were performed on treadmill 
and/or elliptical. The programme progressed as follows: 

Week 1: 40 minutes at HR equating to ~50% V̇O2 
peak. 
Weeks 2-8: 60 minutes at HR equating to ~70% V̇O2 
peak. 

Ex2: 10 whole-body exercises targeting large muscle 
groups. All sessions were 60 minutes in duration. The 
programme progressed as follows: 

Weeks 1-4: 1-2 sets of 8-10 reps at 60% 1RM. 
Weeks 4-13: 2 sets of 8-12 reps to fatigue. 

All exercise sessions were 
supervised by exercise 
physiology graduates.  

4 participants did not complete 
exercise training (2 from each 
group). Mean (± SD) attendance 
was 95% (± 4.3%) and 97% (± 
2.8%) in aerobic and resistance 
groups respectively. 

Asked not to 
participate in any 
structured exercise 
activity 

To aid adherence, 
participants in control 
group were offered the 
opportunity to 
complete either 
exercise intervention 
following post-study 
assessment. 

Participants consumed a weight-
maintenance diet throughout the 
duration of the study. 
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Malin et al. 
(2013) 

Uncontrolled 
Intervention 

Aerobic 1 week 7 consecutive 
days 

Sessions lasted for approximately 60 minutes consisting 
of treadmill running at 85% HRmax. 

All exercise sessions were 
supervised and 100% adherence 
was reported. 

N/A 
Participants were instructed to 
maintain normal dietary habits and 
habitual physical activity. 

Meex et al. 
(2010) 

Uncontrolled 
Intervention 

Combined 
(Moderate 
Aerobic + 
Resistance) 

12 weeks 

3 times per 
week total  

(2 aerobic, 1 
resistance)  

Aerobic: 30 minutes at 55% Wmax. 

Resistance: 8 whole-body exercises targeting large 
muscle groups with 2 sets of 8 reps at 55% MVC. 

Training sessions were supervised 
with 4 participants exercising per 
session. 

N/A None reported 

Oh et al. 
(2014) 
 
Uncontrolled 
Intervention 

Vibration / 
Acceleration 6 weeks 3 times per 

week 

Whole-body exercises were performed using a vertical 
vibration machine. 

Sessions lasted 40 minutes with 30 seconds in between 
each exercise.  

Each week, one ‘movement preparation’, one ‘strength 
and power’ and one ‘massage’ session were performed. 

Trained staff supervised all 
exercise sessions to ensure 
correct execution. 

N/A 

Participants received lifestyle 
counselling regarding diet and 
physical activity for NAFLD for 12 
weeks prior to the intervention. This 
ceased at the beginning of the 
intervention. 

Participants completed 24 hour food 
records for 3 consecutive days and 
wore a uniaxial accelerometer for 2 
weeks at baseline and during the 
final week of the intervention. 

Pugh et al. 
(2014) 
 
RCT 

Aerobic 16 weeks 3 – 5 times 
per week 

Sessions consisted of a combination of treadmill and 
cycling exercise and progressed as follows: 

Weeks 1-4: 30 minutes at 30% HRR, 3 times per 
week. 
Weeks 4-8: 30 minutes at 45% HRR, 3 times per 
week. 
Weeks 8-12: 45 minutes at 45% HRR, 3 times per 
week. 
Weeks 12-16: 45 minutes at 60% HRR, 5 times per 
week. 

Weekly sessions were supervised 
by a trained exercise physiologist. 

Conventional care 
consisting of lifestyle 
advice from a 
consultant hepatologist 
or specialist nurse 
provided at a clinical 
consultation.  

No supervision or 
guidance was provided 
beyond this initial 
visit. 

Participants in the exercise group 
were instructed to make no dietary 
modifications throughout the 
duration of the study, confirmed by 
24 hour food diaries completed for 3 
days before and after the 
intervention. 

Sargeant et 
al. (2018) 
 
Controlled 
Longitudinal 
Intervention 

HIIT 6 weeks 3 times per 
week 

Sessions consisted of 30-second maximal sprints on 
cycle ergometer interspersed with 4.5-minute periods of 
active recovery at 50W. In addition participants 
completed a five-minute warm up and three-minute 
cool-down at 50W. 

Participants completed four intervals per session for the 
first two weeks after which an additional interval was 
added every two weeks, such that six intervals were 
completed per session in weeks five and six. 

All exercise sessions were 
supervised and session attendance 
was 100%. 

Each participant 
completed a six-week 
‘control phase’ before 
the start of the training 
intervention, before 
and after which all 
study were assessed. 

Participants were instructed to 
maintain habitual diet and lifestyle 
throughout the duration of the study. 
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Shojaee-
Moradie et 
al. (2007) 

RCT 

Aerobic 
(Vigorous) 6 weeks 3 times per 

week 
Exercise performed at 60-85% V̇O2 max for a minimum 
of 20 minutes, 

1 session per week was 
supervised by an exercise 
physiologist. 

Participants were 
asked to continue their 
normal diet and 
lifestyle habits. 

Participants were instructed not to 
change dietary habits throughout the 
study. 

Sullivan et 
al. (2012) 
 
RCT 

Aerobic 16 weeks 5 times per 
week 

Sessions consisted of treadmill walking. 

During weeks 1-4, participants exercised for 15-30 
minutes at 45-55% of pre-training V̇O2 peak. Sessions 
progressed regularly until participants performed 30-60 
minutes of exercise at 45-55% V̇O2 peak and this was 
maintained for the remainder of the intervention. 

1 session per week was 
performed under direct 
supervision from a member of the 
research team. The remaining 
sessions were completed at home. 

Participants were 
instructed to maintain 
current activities of 
daily living and were 
contacted once per 
week to review 
compliance. 

None reported 

van der 
Heijden et al. 
(2010a)‡ 
 
Uncontrolled 
Intervention 

Aerobic 12 weeks 4 times per 
week 

Sessions consisted of treadmill, elliptical or cycle 
ergometer exercise. 

Sessions lasted approximately 50 minutes consisting of 
10 minutes warm-up, 10 minutes cool down and 30 
minutes exercise at a heart rate corresponding to 70% of 
baseline V̇O2 peak (mean ± SE: 86 ± 2% HRmax). 

2 exercise sessions per week were 
supervised by an exercise 
physiologist and the remaining 
were performed at home with 
adherence monitored by 
recording of heart rate. On 
average, participants completed 
91 ± 2% of prescribed sessions. 

N/A 

Participants were instructed to make 
no changes to dietary or physical 
activity habits during the duration of 
the study.  

Body weight was monitored two 
times per week to assure weight 
stability. 

van der 
Heijden et al. 
(2010b) 
 
Uncontrolled 
Intervention 

Resistance 12 weeks 2 times per 
week 

Sessions lasted 60 minutes and consisted of 10 whole-
body resistance exercises targeting large muscle groups. 

The programme progressed as follows: 
Weeks 1-2: 2-3 sets of 8-12 reps at 50% of 3RM. 
Weeks 3-8: individual progression increasing firstly 
by number of reps followed by weight. 
Weeks 9-12: 3 sets of 15-20 reps at 80-85% 3RM. 

All exercise sessions per week 
were supervised by an exercise 
physiologist.  

On average, participants 
completed 96 ± 1% of the 
prescribed sessions. 

N/A 

Participants were instructed to make 
no changes to dietary or physical 
activity habits during the duration of 
the study.  

Body weight was monitored two 
times per week to assure weight 
stability. 
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Zhang et al. 
(2016) 
 
RCT 

Aerobic 24 weeks 5 times per 
week 

Sessions lasted 30 minutes. 

In the moderate exercise group, participants walked 
briskly at approximately 120 steps per minutes so that 
their heart rate was 45 to 55% of predicted HRmax. 

In the vigorous exercise group, participants jogged at an 
intensity that elicited 65 to 80% of their predicted 
HRmax. 

Participants were supervised 
during the first two to four weeks 
of training to familiarise 
themselves with the correct 
exercise intensity. Participant also 
attended bi-weekly health 
education sessions. 

Participants then performed 
sessions at a local community 
centre and received twice-weekly 
telephone calls to assess 
adherence. Participants in the 
moderate group were given 
pedometers to monitor training 
step rate. 

Participants were 
instructed to maintain 
physical activity habits 
and attended bi-
weekly health 
education sessions that 
were held separately to 
those attended by the 
intervention groups. 

Participants were instructed to make 
no changes to their diet throughout 
the duration of the study. 

*Study did not include ‘standard care’ or ‘no intervention’ group. Patients were randomised to either exercise or dietary interventions; ‡ Manuscript 

refers to same study as van der Heijden et al (2009). 
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10.12  Appendix XII: Details of pooled hepatokine analyses 

10.12.1 Methods  

FGF21, follistatin and fetuin-A were measured in each laboratory-based study of this thesis 

(Chapters 4, 5 and 6), whilst LECT2 was investigated in Chapters 4 and 6 only. Samples pre-

treated with lithium heparin, which are required for the LECT2 ELISA used in this thesis, were 

not collected in Chapter 5. SeP was measured in Chapter 4 only and therefore could not be 

included pooled analyses.  

Fasted plasma hepatokine concentrations and other common descriptive variables were pooled 

from each laboratory-based experimental chapter and were assessed for their suitability for 

parametric statistical testing as outlined in General Methods (see Section 3.16). Due to 

heterogeneous variances between groups, Kruskal-Wallis tests were used to explore 

differences in participant characteristics and fasted hepatokine concentrations between the 

groups of individuals recruited in each chapter. The two groups in Chapter 4 were included 

separately. Significant main effects were explored post hoc using Mann-Whitney U tests and 

P-values were adjusted for multiple comparisons using the Holm-Bonferroni correction (Holm, 

1979). Pearson’s and Spearman’s correlations were performed, as appropriate, to explore 

relationships between fasted hepatokine concentrations and markers of adiposity or insulin 

resistance, as well as circulating lipids (TG and total cholesterol) and cardiorespiratory fitness. 

10.12.2 Results 

Participant characteristics of each group are presented in Table 10.8. By design, the individuals 

in each of the overweight/obese groups had greater BMI, BF% and WC, compared to the 

normal weight individuals (Figure 10.1a-b; all post-hoc pairwise comparisons P ≤ 0.004). BF% 

was greater still in the individuals with overweight or obesity and dysglycaemia compared to 

those with overweight or obesity alone (P = 0.045) and circulating lipids were also higher in 

each of the overweight/obese groups (P < 0.04). HOMA-IR was greater in individuals with 

dysglycaemia or NALFD compared to those without (Figure 10.1d; P ≤ 0.003) and there was 

a progressive increase in Adipo-IR throughout the groups, with the highest value detected in 

the individuals with NAFLD (P < 0.04).  

Absolute V̇Ȯ2 peak was lower only in the overweight/obese dysglycaemic individuals 

compared to the other three groups (P < 0.04) but these individuals were also significantly 

older (P < 0.001). Conversely, individuals with dysglycaemia or NAFLD had lower relative 
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V̇Ȯ2 peak (normalised to total body weight) compared with the normal weight normoglycaemic 

participants (P < 0.01). It should be noted that relative V̇Ȯ2 peak was significantly lower in the 

overweight/obese normoglycaemic individuals compared to the normal weight 

normoglycaemic group when these data were analysed in isolation (Chapter 4). Furthermore, 

in these pooled analyses, the uncorrected P-value for the pairwise comparison between these 

groups was also statistically significant (P = 0.027), but became non-significant (P = 0.08) after 

correction for multiple comparisons. 

Compared to normal weight individuals, FGF21 was greater in each of the overweight or obese 

groups (Figure 10.1c; P ≤ 0.024), but there were no further differences between 

overweight/obese individuals with normoglycaemia, dysglycaemia or NAFLD (P ≥ 0.81). As 

reported in Chapter 4, fasted LECT2 was higher in the overweight/obese participants than the 

normal weight controls, when all individuals were normoglycaemic (P = 0.023). However, 

fasted concentrations in individuals with NAFLD were not significantly different from either 

of the normoglycaemic groups (unadjusted P = 0.07). Conversely, fasted concentrations of 

follistatin were greater in individuals with dysglycaemia or NAFLD (Figure 10.1e; P < 0.0001) 

but, as presented in Chapter 4, there were no differences between normal weight or 

overweight/obese individuals with normal glycaemic control (P = 0.19). Fasted concentrations 

of plasma fetuin-A were greater in individuals with dysglycaemia compared to 

overweight/obese individuals with normal glycaemic control (Figure 10.1f; P = 0.01) but there 

were no other differences between groups, including the normal weight individuals (unadjusted 

P ≥ 0.07). 

Table 10.9 presents details of significant correlations between fasted circulating hepatokine 

concentrations (FGF21, follistatin and fetuin-A only) and markers of cardiometabolic health. 

Circulating concentrations of FGF21, follistatin and fetuin-A were positively associated with 

one another and each were positively correlated with markers of adiposity (BMI, WC and/or 

BF%). There were no relationships between fasted hepatokine concentrations and fasted 

circulating glucose (|r| or |rho| ≤ 0.26, P ≥ 0.10) and only follistatin was positively correlated 

with circulating NEFA. However, each hepatokine was positively associated with circulating 

insulin and, in turn, with HOMA-IR and Adipo-IR (all P < 0.01). Circulating fetuin-A was 

negatively associated with absolute V̇Ȯ2 peak, whilst the relationships with follistatin and 

FGF21 approached statistical significance (Table 10.9). Each hepatokine was, however, 

significantly negatively correlated with V̇Ȯ2 peak normalised relative to body weight.
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Table 10.8 Participant characteristics, including fasted circulating hepatokines, in participants recruited in exercise laboratory-based 

experimental chapter of this thesis 

 
Chapter 4 

Normal Weight 
Normoglycaemic 

Chapter 4 
Overweight/Obese 
Normoglycaemic 

Chapter 5 
Overweight/Obese 

Dysglycaemic 

Chapter 6 
Overweight/Obese 

NAFLD 
P-value  

n 11 11 12 9  
Sex (M/F) 11/0 11/0 6/6 9/0  
Age (years) 30 (24 – 52) 51 (33 – 56) 69 (67 – 71) γ 39 (35 – 50) <0.001 

Anthropometry              
BMI (kg·m-2) 23.4 (22.4 – 24.0) α 29.2 (27.0 – 31.5) 28.8 (28.4 – 32.5) 32.0 (29.1 – 33.6) <0.001 
Body fat (%) 16.9 ± 3.6 α 26.4 ± 4.0 35.7 ± 6.0 γ 28.7 ± 3.0 <0.001 
Waist circumference (cm) 81.6 ± 5.3 α 96.0 ± 7.8 101.7 ± 6.4 111.3 ± 7.5 δ <0.001 

Insulin Sensitivity      
Fasted circulating glucose (mmol·L-1)* 4.9 ± 0.2 5.0 ± 0.3 5.4 ± 0.5 ε 4.7 ± 0.3 0.002 
Fasted plasma NEFA (mmol·L-1) 0.40 ± 0.18 0.58 ± 0.14 0.51 ± 0.16  0.59 ± 0.14  0.06 
Fasted circulating insulin (mU·L-1)* 26.1 (22 – 33.8) 32.9 (23.0 – 39.1) 63.7 (50.5 – 99.1) γ 101.2 (83.3 – 127.7) δ <0.001 
HOMA-IR 0.95 ± 0.39 1.21 ± 0.67 2.89 ± 1.19 ζ 3.67 ± 0.96 ζ <0.001 
Adipo-IR 12.6 ± 9.0 α 22.0 ± 13.0 β 35.2 ± 12.5 γ 61.8 ± 20.4 δ <0.001 

Cardiorespiratory Fitness              
Absolute V ̇Ȯ2 peak (L·min-1) 3.46 ± 0.74 3.21 ± 1.21 2.19 ± 0.50 γ 3.23 ± 0.41 0.001 
Relative V ̇Ȯ2 peak (mL·kg-1·min-1) 50.1 ± 11.9 38.5 ± 9.7 26.5 ± 4.6 η 31.8 ± 4.8 η <0.001 

Circulating Lipids              
Triglyceride (mmol·L-1) 0.89 (0.64 – 1.33) α 1.79 (1.11 – 2.31) 1.36 (1.19 – 2.31) 2.18 (1.27 – 2.60) 0.004 
Total Cholesterol (mmol·L-1) 4.12 ± 0.73 α 4.91 ± 0.89 5.18 ± 0.91 4.88 ± 0.59 0.034 

Hepatokines              
FGF21 (pg·mL-1) 64 (32 – 144) α 183 (133 – 266) 143 (133 – 386) 176 (110 – 505) 0.007 
Follistatin (pg·mL-1) 795 ± 257 670 ± 154 2077 ± 480 ζ 2381 ± 909 ζ <0.001 
Fetuin-A (µg·mL-1) 541 ± 137 497 ± 99 682 ± 141 θ 608 ± 138 0.016 
LECT2 (ng·mL-1) 30.8 ± 9.9 α 47.6 ± 17.2 Not Measured 40.0 ± 4.9 0.023 

*In Chapter 4 and 5, glucose and insulin are measured in plasma. In Chapter 6, glucose and insulin were measured in whole blood and serum, respectively. α 

normal weight normoglycaemic group significantly different from each other group (P < 0.05); β overweight/obese normoglycaemic group significantly different 
from each other group (P < 0.05); γ overweight/obese dysglycaemic group significantly different from each other group (P < 0.05); δ overweight/obese NAFLD 
group significantly different from each other group (P < 0.05); ε significantly different from normal weight normoglycaemic and overweight/obese NAFLD 
groups (P < 0.05); ζ significantly different from both normoglycaemic groups (P < 0.05); η significantly different from normal weight normoglycaemic group 
(P < 0.01); θ significantly different from overweight/obese normoglycaemic group. 
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Figure 10.1 Comparisons of adiposity, insulin resistance and fasted hepatokine 

concentrations in laboratory-based experimental studies (Chapters 4, 5 and 6). Data 

presented as mean ± SD unless otherwise stated; # indicates that one of more groups were not 

normally distributed and thus data presented as median (IQR). To allow consistent presentation, 

some data may appear as a different summary statistic to that reported in the respective chapter 

of this thesis. 
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Table 10.9 Statistically significant relationships (and selected others) between fasted hepatokines concentrations and makers of 

cardiometabolic health in the pooled population of individuals recruited in this thesis. 

 Fasted Circulating FGF21 Fasted Circulating Follistatin Fasted Circulating Fetuin-A 

 Correlation Co-efficient 
(P-value) 

Correlation Co-efficient 
(P-value) 

Correlation Co-efficient 
(P-value) 

Age  rho = 0.37 (P = 0.014)  
Anthropometry ~ ~ ~ 

Body weight r = 0.57 (P < 0.001)    
BMI r = 0.58 (P < 0.001) rho = 0.21 (P = 0.009)  
BF% r = 0.47 (P = 0.002) rho = 0.52 (P < 0.001) r = 0.43 (P = 0.005) 
WC r = 0.66 (P < 0.001) rho = 0.54 (P < 0.001)  

Insulin Sensitivity ~ ~ ~ 
Fasted Circulating Glucose    
Fasted Circulating Insulin rho = 0.46 (P = 0.002) rho = 0.70 (P < 0.001) r = 0.46 (P = 0.002) 
HOMA-IR rho = 0.46 (P = 0.002) rho = 0.71 (P < 0.001) r = 0.45 (P = 0.003) 
NEFA r = 0.55 (P < 0.001)   
Adipo-IR r = 0.67 (P < 0.001) # rho = 0.65 (P < 0.001) r = 0.42 (P = 0.006) # 

Circulating Lipids ~ ~ ~ 
Fasted Plasma Triglyceride r = 0.47 (P = 0.001) # rho = 0.35 (P = 0.02)  
Total Cholesterol    

Cardiorespiratory Fitness ~ ~ ~ 
Absolute V̇O2 peak [rho = -0.30 (P = 0.053)] [rho = -0.28 (P = 0.071)] r = -0.34 (P = 0.003) 
Relative V̇O2 peak r = -0.59 (P < 0.001) rho = -0.44 (P = 0.003) r = -0.36 (P = 0.002) 

Hepatokines ~ ~ ~ 
Fasted Circulating FGF21 ~ rho = 0.36 (P = 0.02) r = 0.36 (P = 0.02) # 
Fasted Circulating Follistatin ~ ~ rho = 0.51 (P = 0.001) 

Shaded areas represent no significant correlations between variables. FGF21 and fetuin-A data were log transformed prior to parametric analyses; follistatin 

data were not normally distributed even when log transformed so non-parametric analyses were performed; # indicates independent variable was log transformed 

prior to analysis. 
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