Loughborough University
Thesis-2013-Njoku.pdf (7.23 MB)

Heterogeneous mixtures for synthetic antenna substrates

Download (7.23 MB)
posted on 2013-04-09, 07:46 authored by Chinwe C. Njoku
Heterogeneous mixtures have the potential to be used as synthetic substrates for antenna applications giving the antenna designer new degrees of freedom to control the permittivity and/or permeability in three dimensions such as by a smooth variation of the density of the inclusions, the height of the substrate and the manufacture the whole antenna system in one process. Electromagnetic, fabrication, environmental, time and cost advantages are potential especially when combined with nano-fabrication techniques. Readily available and cheap materials such as Polyethylene and Copper can be used in creating these heterogeneous materials. These advantages have been further explained in this thesis. In this thesis, the research presented is on canonical, numerical and measurement analysis on heterogeneous mixtures that can be used as substrates for microwave applications. It is hypothesised that heterogeneous mixtures can be used to design bespoke artificial dielectric substrates for say, patch antennas. The canonical equations from published literature describing the effective permittivity, ε_eff and effective permeability, μ_eff of heterogeneous mixtures have been extensively examined and compared with each other. Several simulations of homogenous and heterogeneous media have been carried out and an extraction/inversion algorithm applied to find their ε_eff and μ_eff. Parametric studies have been presented to show how the different variables of the equations and the simulations affect the accuracy of the results. The extracted results from the inversion process showed very good agreement with the known values of the homogenous media. Numerically and canonically computed values of ε_eff and μ_eff of various heterogeneous media were shown to have good agreement. The fabrication techniques used in creating the samples used in this research were examined, along with the different measurement methods used in characterising their electromagnetic properties via simulations and measurements. The challenges faced with these measurement methods were explained including the possible sources of error. Patch antennas were used to investigate how the performance of an antenna may be affected by heterogeneous media with metallic inclusions. The performance of the patch antenna was not inhibited by the presence of the metallic inclusions in close proximity. The patch measurement was also used as a measurement technique in determining the ε_eff of the samples.



  • Mechanical, Electrical and Manufacturing Engineering


© Chinwe Christiana Njoku

Publication date



A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.

EThOS Persistent ID



  • en