Loughborough University
Browse

Investigating the stability of geosynthetic landfill capping systems

Download (23.35 MB)
thesis
posted on 2011-01-19, 12:03 authored by Patience B. Orebowale
The use of geosynthetics in landfill construction introduces potential planes of weakness. As a result, there is a requirement to assess the stability along the soil/geosynthetic and geosynthetic/geosynthetic interfaces. Stability is governed by the shear strength along the weakest interface in the system. Repeatability interface shear strength testing of a geomembrane/geotextile interface at low normal stresses suitable for capping systems showed considerable variability of measured geosynthetic interface shear strengths, suggesting that minor factors can have a significant influence on the measured shear strength. This study demonstrates that more than one test per normal stress is necessary if a more accurate and reliable interface shear strength value is to be obtained. Carefully controlled inter-laboratory geosynthetic interface shear strength comparison tests undertaken on large direct shear devices that differ in the kinematic degrees of freedom of the top box, showed the fixed top box design to consistently over estimate the available interface shear strength compared to the vertically movable top box design. Results obtained from measurement of the normal stress on the interface during shear with use of load cells in the lower box of the fixed top box design, raise key questions on the accuracy, reliability and proper interpretation of the interface shear strength data used in landfill design calculations. Tests on the geocomposite/sand interface have shown the interface friction angle to vary with the orientation of the geocomposite's main core, in relation to the direction of shearing. Close attention needs to be paid to the onsite geocomposite placement in confined spaces and capping slope corners, as grid orientation on the slope becomes particularly important when sliding is initiated. Attempts to measure the pore water pressure during staged consolidation and shear along a clay/geomembrane interface in the large direct shear device suggest that this interface is a partial drainage path.

History

School

  • Architecture, Building and Civil Engineering

Publisher

© Patience Birungi Orebowale

Publication date

2006

Notes

A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.

EThOS Persistent ID

uk.bl.ethos.428912

Language

  • en