Natural polymer-based hydrogels, like bacterial cellulose (BC) hydrogels, gained a growing interest in the past decade mainly thanks to their good biological properties and similar fibrous structure as real human tissues that make them good potential candidate materials for various applications in a biomedical field. BC hydrogels are produced in a process of primary metabolism of some microorganisms. They were intensively studied with regard to their biological aspects, revealing many potential applications such as a direct implant replacement of some real tissues and an excellent scaffold for in-vitro tissue regeneration; still, its mechanical behaviour under application-relevant conditions has not been well documented. [Continues.]
Funding
Loughborough University, Wolfson School of Mechanical, Manufacturing and Electrical Engineering.
History
School
Mechanical, Electrical and Manufacturing Engineering
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
2016
Notes
A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.