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Abstract 

Scientific problems are solved by finding the optimal solution for a specific task. Some 

problems can be solved analytically while other problems are solved using data driven methods. 

The use of digital technologies to improve the transportation of people and goods, which is 

referred to as intelligent mobility, is one of the principal beneficiaries of data driven solutions. 

Autonomous vehicles are at the heart of the developments that propel Intelligent Mobility. Due 

to the high dimensionality and complexities involved in real-world environments, it needs to 

become commonplace for intelligent mobility to use data-driven solutions. As it is near 

impossible to program decision making logic for every eventuality manually. While recent 

developments of data-driven solutions such as deep learning facilitate machines to learn 

effectively from large datasets, the application of techniques within safety-critical systems 

such as driverless cars remain scarce. 

Autonomous vehicles need to be able to make context-driven decisions autonomously 

in different environments in which they operate. The recent literature on driverless vehicle 

research is heavily focused only on road or highway environments but have discounted 

pedestrianized areas and indoor environments. These unstructured environments tend to have 

more clutter and change rapidly over time. Therefore, for intelligent mobility to make a 

significant impact on human life, it is vital to extend the application beyond the structured 

environments. To further advance intelligent mobility, researchers need to take cues from 

multiple sensor streams, and multiple machine learning algorithms so that decisions can be 

robust and reliable. Only then will machines indeed be able to operate in unstructured and 

dynamic environments safely. Towards addressing these limitations, this thesis investigates 

data driven solutions towards crucial building blocks in intelligent mobility. Specifically, the 

thesis investigates multimodal sensor data fusion, machine learning, multimodal deep 

representation learning and its application of intelligent mobility. This work demonstrates that 

mobile robots can use multimodal machine learning to derive driver policy and therefore make 

autonomous decisions. 

To facilitate autonomous decisions necessary to derive safe driving algorithms, we 

present an algorithm for free space detection and human activity recognition. Driving these 

decision-making algorithms are specific datasets collected throughout this study. They include 

the Loughborough London Autonomous Vehicle dataset, and the Loughborough London 

Human Activity Recognition dataset. The datasets were collected using an autonomous 
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platform design and developed in house as part of this research activity. The proposed 

framework for Free-Space Detection is based on an active learning paradigm that leverages 

the relative uncertainty of multimodal sensor data streams (ultrasound and camera). It utilizes 

an online learning methodology to continuously update the learnt model whenever the vehicle 

experiences new environments. The proposed Free Space Detection algorithm enables an 

autonomous vehicle to self-learn, evolve and adapt to new environments never encountered 

before. The results illustrate that online learning mechanism is superior to one-off training of 

deep neural networks that require large datasets to generalize to unfamiliar surroundings.  

The thesis takes the view that human should be at the centre of any technological 

development related to artificial intelligence. It is imperative within the spectrum of intelligent 

mobility where an autonomous vehicle should be aware of what humans are doing in its 

vicinity. Towards improving the robustness of human activity recognition, this thesis proposes 

a novel algorithm that classifies point-cloud data originated from Light Detection and Ranging 

sensors. The proposed algorithm leverages multimodality by using the camera data to identify 

humans and segment the region of interest in point cloud data. The corresponding 3-

dimensional data was converted to a Fisher Vector Representation before being classified by 

a deep Convolutional Neural Network. The proposed algorithm classifies the indoor activities 

performed by a human subject with an average precision of 90.3%. When compared to an 

alternative point cloud classifier, PointNet[1], [2], the proposed framework out preformed on 

all classes.  

The developed autonomous testbed for data collection and algorithm validation, as 

well as the multimodal data-driven solutions for driverless cars, is the major contributions of 

this thesis. It is anticipated that these results and the testbed will have significant implications 

on the future of intelligent mobility by amplifying the developments of intelligent driverless 

vehicles.  
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Chapter 1 Multimodal Machine Learning for 

Intelligent Mobility 

1.1 Introduction 

Artificial Intelligence (AI) and Machine Learning (ML) have been used to beat 

masters at chess, poker aficionados and Go grandmasters – one of the world's most complex 

games [3], [4]. IBM Watson has even won the Gameshow Jeopardy, and now a different 

version of Watson has been trained to design personalized cancer treatments for patients [5]. 

AI is the development of algorithmic systems capable of performing tasks that typically require 

human intelligence [6]. ML, on the other hand, is a subset of AI in which computers uses big 

data to learn how to do a particular task [6]. Both AI and ML are used to do things that humans 

have spent many years perfecting, and the machines are beating us hands down. However, as 

good as we are at teaching AI to perform complex tasks, we are terrible at getting machines to 

learn even the most basic, childlike skills [4], [7]. 

Moravec's Paradox1 is the problem of being able to perform complex tasks but not 

simple ones. Named after Hans Moravec, who studied this issue in the 1980s, he seemed to 

 

 

1 Moravec Paradox states that, contrary to popular believe, high-level reasoning requires less 
computation than low-level unconscious cognition. [8] 
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have a pretty straightforward solution – make a program that thinks like a child [8]. On the 

most basic level, this is Moravec's Paradox. We do not know how to program general 

intelligence, although we are great at getting AI to do a singular task. For example, most 

toddler level skills, such as facial recognition, involves learning new things before transferring 

them to another context. Getting a computer to do this is a primary goal of AI, we called this 

concept, Artificial General Intelligence (AGI). 

In 1988 Hans Moravec said that evolution is the reason it is so hard to achieve AGI 

[8]. His point was that the things that seem easy for us are the result of thousands of years of 

evolution. So even though most kids can quickly tell the difference between blue and yellow, 

a friend and a stranger, these are not simple skills. They only seem simple to us because our 

species have spent thousands of years refining them. 

For example, learning to drive, one will always remember the early experiences of 

being behind the wheel. Whether it is memories of the driving instructor, the first lesson, theory 

or practical test, the memory is pronounced. The habits humans form, or driver policy we 

develop are a direct result of the rules of the road, and the experience gained. These rules are 

not instructions on how to behave but rather a group of statutory instruments setting out what 

one may or may not do. While this is sufficient to get started, it is only through the experience 

of driving on the road that one develops a policy to which we adhere. Of course, we can all 

agree that learning to drive is a trailing experience; however, Moravec theorized that it is not 

as difficult as learning to talk, walk, or understand the terrain around us. 

This is no different for Intelligent machines where driver policy refers to the decision-

making capability of the vehicle under various situations. The goal is to solve complex tasks 

consisting of high dimensional data input. Unfortunately, it has proven hard to construct 

sophisticated agents that are capable of driving a vehicle with human-like performance [9]. 

Although these agents can perform specific tasks very well, they cannot perform a range of 

functions. 

Part of the problem is that computer science is relatively young, and the study of AI 

is even younger! Therefore, it is ambitious to think humans would have figured out AGI 

already. Then again, Moravec did not believe this was the only issue; he also thought that 

researchers were approaching the problem the wrong way [8]. In the 1980s, researchers into 

AI were mainly working from the top-down, trying to copy the mental process of fully formed 

human brains [10]. Moravec believed that the most successful approach would be to work 
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from the bottom up. In other words, instead of building a complex brain from scratch, he 

thought that machines should mimic evolution. 

Like nature, Moravec thought it best to start small and then add complexity to the 

system, all the while challenging these systems to adapt. Moravec, amongst others, thought 

how the human brain performs tasks could be studied and then applied to machines [10], [11]. 

Self-evolution is what happens in online active learning [12], [13], where the machine queries 

new data as it comes in before reforming its understanding of what is its seeing. Moravec’s 

theory appears to be a solution that works, and the more that researchers base their AI on the 

human brain, the smarter these machines will get. 

Although Moravec’s paradox was conceived 30 years ago, it is still very relevant today. 

For example, the current state-of-the-art in AI is excellent at solving “narrow” competencies 

or singular tasks, humans, on the other hand, are good at pretty much everything [14]. In an 

interview, Dr Sean Holden of Cambridge University stated that “Most AI researchers don’t try 

to solve the whole problem because it is too hard. They take some specific problem and do it 

better” [14]. Dr Holden is not alone in this thinking. In [15], researchers reported on the fact 

that the majority of the application of AI in today’s workplace uses virtually no abstract 

thought. Workers in positions that work to a fixed set of rules are being replaced at an 

astonishing rate [16]. Conversely in the creative industries, where abstract thought is 

prerequisite, peoples livelihood are as secure as they ever have been [16]. 

Neural networks are systems that can teach themselves to recognize patterns – they 

are modelled on the way human brains learn. When something new is learned, our brain 

strengthens the connection between neurons [17]. It does this by adding more connection so 

that the brain can process more signalling molecules. Over time these connections develop and 

grow stronger and will, in all likelihood, stay this way for some time. The connection can get 

overwritten with something more helpful. Neural networks mimic the circuits in the human 

brain [4]. They start with some basic framework about how to do a task. Then they practice 

that task with labelled test data to refine and optimize the connection between artificial neurons 

[18]. As a tool, Neural Networks are not perfect – they can only perform the task, they trained 

for, and the connections they form, adjust every time they re-train [19]. However, they are a 

big step towards AGI [20], although fully operational AGI is quite some distance away. 

One approach to solving this problem takes inspiration from the way the human brain 

does not just use whatever neurons are available [21]. Instead, it activates different sets of 

neurons for different tasks and leaves some neurons alone [22], [23]. This process is achieved 
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using Dropout – where some neurons in the Neural Network are switched off – or an activation 

function that only responds to specific values. In a 2018 study published by Proceedings of the 

National Academy of Sciences (PNAS), researchers showed that it was possible to do this in 

a Neural Network too [24]. Making one task activate one set of neurons, and another task 

activate another. By combining this approach with previous research methods, these 

researchers were able to program a Neural Network that achieves 90% accuracy on over 500 

different tasks [23]. The greater understanding we attain about the method in which these 

networks refine connections, the better this branch of AI is going to get at preforming various 

tasks. The challenge is getting the system to learn from more than just one example. 

Not every task in ML has a massive dataset for a network to sort through; if a program 

is going to think like a human, it must start grasping the rules that govern it. While some tasks 

can be solved using big data, some must be learned from a relationship linking to data types. 

While it might not seem as obvious, these systems take design cues from our brains. When a 

system is learning from a robust sensor stream, it can help us deduce what another sensor sees. 

By building similar systems in AI, we hope to encourage the systems to keep learning and 

adapting their understanding of the surroundings [25]. 

A program with general intelligence should be able to process multiple kinds of data 

sources and be able to learn new rules. As well as taking advantage of data sources, AGI should 

be able to take advantage of multiple ML algorithms that perform different tasks that contribute 

towards a single goal [26]. Multimodal ML is a multi-disciplinary research field with one of 

its earliest application in the field of Audio-Visual Speech Recognition (AVSR) [27]. Similar 

to sensor data fusion in the sense that it uses multiple sensor modalities, Multimodal ML uses 

multiple ML algorithms, either in parallel or in series to improve performance [28]. While not 

quite AGI, this process allows different ML algorithm to perform multiple tasks in a similar 

way to people. Multimodal ML helps one modality to affect the identification of another 

modality, allowing use of complementary data [26]. 

1.2 Context & Motivation 

Intelligent mobility is one of the most relevant applications of AI. Frequently used in 

many different sectors from Agriculture [29] to Medicine [30] and Finance [31], it is likely to 

have the greatest impact on the transport sector in the short-term [32]. Worldwide there is an 

average of 3,300 road deaths a day. In the UK alone, over the 11 years, from 1999 to 2010, 
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there were more than 3 million road traffic incidents [33]. In 2015 Transport for London (TfL) 

reported  25,193 casualties took place at signal-controlled urban junctions [34], [35]. 

Increasing degrees of automation – from semi-manual to fully computer-controlled 

vehicles – already exist or are being added to vehicles to improve safety, reduce the number 

of driver tasks, and improve fuel efficiency. The technology and sensors integral to self-driving, 

or vehicle autonomy, already impact the way humans drive. Some believe that as Autonomous 

Vehicle (AV) or robots become ubiquitous, traffic incidents and fatalities will reduce [36], 

[37]. While it is possible to distinguish between the different systems – driverless car, AV, or 

Intelligent mobile platform – they are in effect all robots. To that end, these terms are used 

interchangeably throughout this research. 

Autonomous driving technology has developed at a rapid pace, and will, with all 

probability, continue to do so for the foreseeable future. Already, the first steps towards hands-

free driving are evident, for example, Parking Assist by Volkswagen (VW) and Parktronic by 

Mercedes-Benz [38], [39]. While the majority of the sensor technologies used in automation 

are well-established – Light Detection and Ranging (LiDAR), Near Field Vision, Radar, and 

ultrasonic rangefinders – they primarily function independently, triggering a response rather 

than making decisions based on the data they observe [38], [39]. Fusing the sensor data used 

in such technologies should enable autonomous robots to create multi-layered virtual maps 

with real-time context information. From these real-time virtual maps, the robots can make 

more holistic decisions. 

Given the high dimensionality and complexity of optical sensor data, it is crucial to 

examine ML algorithms to continue the progress already made in Intelligent mobility. Deep 

Learning (DL) – a subset of ML – is one approach to solving problems in this field using 

enormous datasets. Principally, data is passed through a function-approximator using a deep 

multi-layer Neural Network to learn features and make a classification [40]. DL has gained 

much notoriety because of two significant advancements. Firstly, improvements in hardware, 

specifically Graphical Processing Units (GPU), have facilitated computers to increase the 

bandwidth and quantity of data they process. Secondly, the availability of more and more 

large-scale labelled datasets – which are used for training and verification of feature learning 

networks. That is not to say that DL is flawless. Some significant shortcomings are limited 

knowledge about the internal workings of Neural Network [41] and sufficient amounts of 

training data [42], [43]. When either of these scenarios are met the network becomes unreliable 

and prone to errors.  
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Contrary to this, humans, or more specifically infants, have innate knowledge upon 

which they build their understanding of the world. This intuition helps them voraciously learn 

and adapt to situations never encountered. Many scientists working in the field of AI argue 

that most human skills are learned, and therefore machines can learn them without the need 

for pre-loaded rules [44]. But lately, there are a growing number of researchers attempting to 

encode machines with a bit of common sense [45], [46]. 

 The latest trend in ML is DL. Deep Neural Networks – a collection of simple function-

approximators – loosely modelled on neurons in the brain, adjust weights and bias as they are 

presented with more and more data. The results are astonishing, and credit where credit is due, 

Deep Neural Networks can perform remarkable tasks. From facial recognition [47] to 

classifying human activity [48], these networks produce incredible results. However, Neural 

Networks require thousands of training samples to identify the necessary features to form the 

associations needed to make a classification. Even then, they can produce some embarrassing 

errors and dangerous mistakes [49]. For example, ML algorithms can play classic Atari games 

like space invaders with superhuman skills. But by adding one or two random pixels to the 

playing screen, the player's avatar becomes a sitting duck [50]. By comparison, an infant can 

see an image once and instantly recognize it in another context. 

Different research groups are trying to categorize human instinct before encoding into 

AI [51]. These frameworks sit somewhere between pure ML and hard programmed systems. 

One research team developed ML algorithms that emulate interaction networks [52]. 

Interaction Networks embed a rule that relationships exist between objects. For example, 

researchers in [53] embedded some basic knowledge about relationships before getting a 

Neural Network to segment the region of an image containing specific geometric shapes. Like 

the way a baby parses the world into groups with some underlying knowledge, or how they 

use a sense, like touch, to learn about something. In tests, once the ML algorithm learned 

physical properties like gravity and the specific relationships to a falling string, its ability to 

predict its behaviour increased dramatically [48]. While human-like AI is a little way off, these 

latest attempts to artificially reproduce common sense bring closer the possibility of creating 

machines that can fully interact with the world the way humans do, machines that start as an 

infant and progress to learn like a child. 
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1.3 Objectives 

Traditional methods used in computer science require manual programming of 

specific tasks; however, for real-world perception tasks, this is not always possible. This is 

especially the case in computer vision, such as object or scene recognition. Of course, we have 

some well-defined problems, such as edge detection, and some that are more challenging, such 

as recognizing intricate relationships between different elements in an image [52]. In general 

terms, ML is a technique or a set of methods for automated analysis of structure in data [54]. 

It can be broken down into three learning paradigms, Unsupervised Learning, Semi-

Supervised Learning and Supervised Learning. ML is very similar to data mining, but the focus 

is more on autonomous machine performance, rather than enabling humans to learn patterns 

from the data [55]. 

While there have been significant developments in ML, monumental challenges 

remain to enable real-world engineering systems to be enriched with data-driven systems. For 

example, most of the DL systems require massive amounts of data to achieve adequate 

generalization capability. In some instances, collecting enormous amounts of data is 

practically impossible. On the other hand, many critical engineering systems require multiple 

layers of safety, before new data-driven algorithms are assimilated into their operation, and 

most importantly, before the human operators can be replaced. Despite recent developments, 

ML is far from reaching the level of human perception and cognitive ability we hold. We can 

define perception as the interpretation of data to make a decision, and cognition as wisdom, or 

knowledge of an occurring event. In the medium to short-term, human intelligence must be 

the benchmark to compare the performance of ML algorithms. Hence it needs to be at least as 

good as humans are at preforming perception and cognitive tasks [56]–[58]. 

Intelligent mobility is the use of advanced technology to improve the way humans and 

objects are mobilized. The AVs that drive without the need for human intervention is a vital 

element of Intelligent mobility. The AVs will be one of the first mass-market application of 

intelligent robotics in the world. Broadly speaking, the objectives of the research fall under 

perception tasks and cognitive skills. For example, Free Space Detection (FSD), one of the 

contributions of this research, is a perception task, which is the detection of traversable space 

for an AV and largely regarded as a cornerstone of automated driving and human locomotion 

[59], [60]. 
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On the other hand, robots such as AV should be aware of humans around it before 

making decisions. Human Activity Recognition (HAR), another contribution of this research, 

is a cognitive skill that classifies well-defined movements of a human agent to determine what 

activity they are performing [61]. This leaves us with a vast scope to address, and many 

problems to solve, if we want to apply ML to Intelligent mobility, and most importantly if we 

were to make AVs intelligent like humans. 

Specifically, the high-level research objectives of this thesis are: 

1. To design and develop a data collection mechanism to investigate a 

wide spectrum of environments that are to be catered by Intelligent 

mobility applications, such as indoor spaces and pedestrianized areas. 

2. To explore ML algorithms that are capable of adapting to new 

environments and data streams with little or no training. 

3. To investigate methods of leveraging multiple heterogeneous data 

streams (multimodal sensor data) to make robust decisions in safety-

critical autonomous systems. 

The hypothesis of this research is to see if: it is possible to make autonomous systems 

safer and more intelligent with algorithms that are capable of adapting to new environments 

by leveraging multiple heterogeneous data streams to make robust decisions. 

1.4 Contributions 

To achieve the objectives listed above, this thesis presents multiple contributions to 

the academic literature. The contributions specifically focus on the autonomous (driverless) 

vehicle technology, and all the experiments and discussions are based on several applications 

of Intelligent mobility. The participation of this thesis are as follows: 

1. Throughout the course of this research and in the quest to prove the 

research hypothesis, many datasets were reviewed. These datasets were 

deemed unsuitable for the project’s requirements because they lacked 

the correct sensor data modality, did not log data from unstructured 

surroundings or were recorded in outdoor environments. Therefore, a 

means of collecting specific data was needed. The first contribution of 

this thesis is to develop an autonomous platform as an open-source 
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experimental framework for data gathering, sharing, and experimental 

validation for driverless vehicle technology. 

2. Using the autonomous platform, we developed two novel multimodal 

datasets collected with data-driven algorithm development and 

experimental validation in mind. Firstly, the Loughborough London 

Autonomous Vehicle (LboroLdnAV) Dataset is a dataset gathered from 

unstructured indoor and pedestrianized outdoor environments, 

annotated with 7 object classes collected using seven different 

perception sensors. Secondly, the Loughborough London Human 

Activity Recognition (LboroLdnHAR) Dataset is a Multimodal open-

source dataset collected indoors, using three different sensors and 

annotated with 9 classes of human activity  

3. A self-evolving FSD algorithm is developed, which leverages the 

relative uncertainty of different sensors as a utility to automatically label 

new data (active learning) and re-learn the data-driven model whenever 

new data streams are encountered (online learning). 

4. Knowing what human agents are doing in their environment is crucial 

for safe decision-making by AVs. A Multimodal Fisher Vector Network, 

which is a type of deep CNN, is proposed as a new methodology for the 

classification of different human activities leveraging both Red Green 

Blue (RGB) camera data and the Point Cloud data that are gathered from 

LiDAR sensor. 

1.5 Publications 

Several publications in peer-reviewed conferences and journals have been made as a 

result of the contributions presented in Section 1.4. The following are the journal articles or 

conference papers that are about to be published or currently under review and directly 

influenced this thesis:  

1. ROCHE, J., DE SILVA, V., KONDOZ, A., 2019. A Multimodal 

Perception Driven Self-Evolving Autonomous Vehicle. IEEE Trans 

Cybernetics. 2019 (Resubmitted for Review April 2020). 
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2. ROCHE, J., DE SILVA, V., HOOK, J., MOENCKS, M., KONDOZ, 

A., 2019. Multimodal Modal ML for Human Activity Recognition with 

Applications to Intelligent Mobility. IEEE Trans. on Industrial 

Informatics 2020 (Submitted May 2020). 

The following are the journal articles and conference proceedings that are published, 

co-authored and partly influenced this thesis: 

1. DE SILVA, V., ROCHE, J., KONDOZ, A., 2018. Robust fusion of 

LiDAR and wide-angle camera data for autonomous mobile robots. 

Sensors, 18 (8), 2730. 

2. DE SILVA, V., ROCHE, J., SHI, X, KONDOZ, A., 2018. IoT driven 

ambient intelligence architecture for indoor Intelligent mobility. IEEE 

4th Intl Conf on Big Data Intelligence and Computing and Cyber 

Science and Technology Congress Athens, Greece, 12-15 August 2018, 

pp.451-456. 

3. MOENCKS, M., DE SILVA, V., ROCHE, J., & KONDOZ, A., 2019. 

Adaptive Feature Processing for Robust Human Activity Recognition 

on a Novel Multimodal Dataset. ArXiv, abs/1901.02858., in Robotics 

and Autonomous Systems (Resubmitted for Review March 2020). 

The final publication list is aconferance  paper that contributed little to this thesis other 

than some cross over areas of the relevant review material: 

1. ROCHE, J., DE SILVA, V., KONDOZ, A., 2018. A cognitive 

framework for object recognition with application to autonomous 

vehicles. IN: IEEE Computing Conference, London, United Kingdom, 

10-12 July 2018. 

1.6 Thesis Outline 

The organization of this thesis is as follows. The current chapter introduces the context, 

motivation, and objectives of this thesis, as well as the original contributions. 

Chapter 2 provides background into the biological fundamentals of nervous activity 

in the human brain, before presenting a review of the fundamentals of ML, Multimodal ML 

and applications of ML in Intelligent mobility. 
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Chapter 3 presents research on a perception driven AV for data collection. In this 

Chapter, the current available AV and HAR datasets are reviewed. The requirements for the 

development of the test platform and the experimental setup are set out. Finally, this chapter 

finishes with a description of the sensor data representation and the datasets gathered during 

this research – LboroLdnAV dataset & LboroLdnHAR dataset. 

Chapter 4 presents research on a self-evolving FSD model. In this chapter, the 

problems with the current state-of-the-art in FSD are identified, followed by an explanation of 

the geometric alignment of the sensor data representations. Immediately after this, the 

algorithmic frameworks for FSD are presented with an explanation of the different learning 

paradigms used in this process. Finally, Chapter 4 finishes off with some results of the 

proposed framework before moving on to a summary of the findings. 

Chapter 5 presents research on a 3-Dimension (3D) Multimodal Fisher Vector 

Network (MfV Net) for HAR. In this chapter, problems with the current state-of-the-art in 

HAR are identified, followed by an explanation of the geometric alignment of the sensor data. 

Immediately after this, the algorithmic framework for HAR is presented with an explanation 

of the different methods of representation learning. Chapter 5 finishes off with some results of 

the proposed network before moving on to a summary of the findings. 

Chapter 6 concludes this thesis and presents some suggestions for future work. 

Appendix A details the LboroLdnAV Dataset, while Appendix B details the LboroLdnHAR 

Dataset. Appendix C presents some technical drawings describing the autonomous platform. 

  



MULTIMODAL MACHINE LEARNING FOR INTELLIGENT MOBILITY 12 

12 

Chapter 2 Data-Driven Machine Intelligence 

2.1 Introduction 

Many cognitive pathways are employed to survey a visual scene before judgment, and 

associated action is made [62]. During this period, objects in the sensory range are identified 

and classified. Posterior and occipital lobes are critical in linking the visual map with reality 

and, therefore, in determining the location of an object [63]. The ear, neck and extra-ocular 

muscles contribute to this ability to geo-locate [64]. These muscles and auditory abilities are 

responsible for maintaining the link between reality and visual perception [65]. For example, 

when the ears hear a sound, the head and eyes move with respect to the body. The input from 

eyes and ears are required to locate the object of interest. Once the location of an object is 

identified, the visual information is compared to memories stored in the temporal lobes – 

bringing about recognition of the objects. The occipital and temporal lobe regulates decisions 

regarding the recognized object [66]. Commonly referred to as the two-stream hypothesis, the 

link between these parts of the brain is responsible for all visual processing [67], [68]. 

The brain is a system with multiple and distinct components performing specific tasks 

for the body and mind. The neurobiology of vision has its genesis in the Occipital Lobe. The 

Occipital Lobe is a cluster of densely packed neurons, located towards the rear of the brain 

just above the brainstem. When the Occipital Lobe becomes stimulated, dopamine, and other 

neurotransmitters flood the nucleus accumbens and the central nervous system forcing the 

hippocampus to recall memories relating to the objects they see [69]. For example, dopamine, 

a neurotransmitter that helps control the reward and pleasure centres of the brain, muscle 
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innervation, and emotional response – enables humans not only “see rewards, but to take action 

to move towards them” [69], [70]. 

 
Figure 1: Two neurons side by side showing the Nucleus, Axon, Synapse, Dendrites, Neurotransmitters, and the Synaptic Cleft 
[71]. 

 Although no physical connection exists between synapse and dendrites – the start and 

the end of neurons – signals are transmitted with the assistance of neurotransmitters and 

biochemical markers [72]. When a signal needs to pass across the synaptic cleft – the space 

between synapse and dendrites – neurotransmitters change the permeability of the cell wall 

[73]. This change in permeability allows cellular fluid to flow into the cerebral space mixing 

with cerebrospinal fluid – thus inducing an action potential that passes along the axon from 

neuron to neuron [70]. This arrangement is depicted in Figure 1, and depending on the 

biochemical marker and nerve type, the body and brain react in different ways. This 

relationship between neurotransmitters and biochemical markers, coupled with the location of 

brain components and nerve groupings, is the result of millions of years of evolution. It has 

allowed humankind to survive and controls how the body perceives objects it encounters 

continually. It is what makes humans who we are. It is what scientists are trying to emulate 

when they research AI [4]. 
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Typically, what is regarded as AI nowadays is an Artificial Neural Network (ANN). 

An ANN is a computer algorithm that imitates the biological function of the human brain [74]. 

It contains virtual neurons that arrange in interconnected layers. Each artificial neuron passes 

on information by performing calculations in a similar way to the human brain. In the Neural 

Network, the neurons are just numbers in the code with typical values between 0 and 1. The 

connections between neurons are often referred to as weights. These weights describe how 

much the information from one-layer matters to the next. The values of the neurons (bias) and 

the weights are the free parameters of the network. In training the network, we want to find 

those values of these parameters so that loss can be minimized – often referred to as the loss 

function. Technically it is an optimization problem that the Neural Networks solve [75]. In 

such optimization problems, the Neural Network works through all combinations and learns 

the pattern in the data using Backpropagation. Learning through Backpropagation means that 

as the network returns a result that is not particularly good, the weights and bias are changed. 

Neural Networks learn from failure through a combination of forward and backpropagation. 

While it is nowhere near AGI, it certainly shows progress in the right direction. 

This chapter is organized as follows; Section 2.2 reports on immanent nervous activity 

before moving onto the fundamentals of ML in Section 2.3. In this section, we shift from the 

biological to the artificial, reporting on the different learning paradigms and the ML techniques 

used during this research. In Section 2.4, we report on Multimodal Machine Learning before 

moving onto Section 2.5, where we applications of ML in Intelligent mobility. In Section 2.6, 

we conclude this chapter with a summary. 

2.2 Imminent Nervous Activity a template for Artificial intelligence 

In 1848 Phineas Gage was working as part of a crew cutting a railroad in the American 

bedrock of Vermont. Gage was using a tamping iron to pack explosives when tragedy struck 

[76]. The tamping iron - roughly 1 meter long, 3 cm in diameter and 6 kilograms in weight – 

ignited the explosives and shot the iron rod through Gage's left cheek, into his brain before the 

rod exited his skull and landed several meters away [77]. When Gage presented to Dr John 

Harlow - blinded in his left eye and suffering traumatic brain injury – Gage is reported to have 

remained lucid enough to tell the doctor, "Here is business enough for you" [76], [77]. 

Such injury inevitably caused some notoriety for Gage amongst locals, but it was Dr 

Harlow who etched the incidence into the history books. Treating Gage for some time after 

the incident, Dr Harlow reported that his friends found him "no longer Gage." "The balance 
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between his intellectual faculties and animal propensities seemed gone." "He could not stick 

to plans, uttered the grossest profanity, and showed little deference for his fellows" [77], [78]. 

It was not long until the construction company – that previously regarded him as a "model 

foreman" – refused him employment [76]–[80]. Medical practitioners and psychologists 

argued that this was evidence that the brain was "localized" or "plastic" [77], [78]. To an extent, 

modern neuroscience tells us that both are correct – as the brain is regarded as being both 

plastic and compartmentalized. 

Fast forward nearly 100 years, and research by Canadian psychologist Donald Hebb 

resulted in what is now known as Hebbian learning. Hebbian Learning describes how the brain 

undergoes neural plasticity following a traumatic incident or a period of neural adaptation 

[81]–[83]. His work considered events experienced by people such as Gage, and he formed 

the hypothesis of learning based on the mechanism of neural plasticity [83]. Building on 

Donald Hebb's work, Warren McCulloch and Walter Pitt's researched threshold logic, which 

is one of the cornerstones of modern Neural Nets. The work looked at two distinct approaches 

to biological processing in the brain and the applications of neural nets [74]. 

Donald's view on how the brain wires and rewires itself is what all contemporary 

neural nets do. How weights and bias are assigned to inputs to reaffirm a connection or build 

a new, more robust link is not a new idea [83]. People have been discussing concepts like this 

since Gage had that unfortunate accident. More recently, however, neural nets have gone 

through a revival due in part to projects like Google's Deep Mind, Tesla Self-Driving Cars, 

and Toyota's billion-dollar AI research Investment. These projects are expanding on 

McCulloch and Pitts' work with one key difference - they are expanding neural nets by adding 

hidden layers, stacking them on top of each other, and calling them Deep Net's [84], [85]. 

2.2.1 Neural Plasticity 

Neuroscience is a biological science that is concerned with the function of the brain 

and the nervous system. Throughout our life, we are shaped by experiences that not only 

change our behaviour but also alter how we think. Exactly how this happens is not entirely 

understood, but one crucial mechanism is the physical changes and connections in our brain. 

The changing and shaping of connections in our brain is referred to as neuroplasticity. Donald 

Hebb was amongst the first people to describe this process. In his book "The Organization of 

Behaviour; A Neuropsychological Theory," he wrote his now-classic Hebb's postulate [11]. 

Hebb's postulate states that when two neurons fire at the same time, the connection between 

them is strengthened – becoming more likely to fire again in the future. When two neurons 



MULTIMODAL MACHINE LEARNING FOR INTELLIGENT MOBILITY 16 

16 

fire in an uncoordinated manner, the connection between them weakens – becoming more 

likely to act independently in the future. Simply Put - neurons that fire together, wire together, 

- and neurons that fire apart, wire apart [11]. 

The brain can be viewed as a vast interconnected circuit with millions of different 

paths for the electrical currents to flow. Some of these paths can accommodate higher current 

allowing the electrons to move without restriction. These paths represent a human, established 

way of thinking, feeling, and doing. Every time we think, feel, or do something in the same 

way, we strengthen this path making it more robust, allowing an action potential to move 

without restriction. As a result, it becomes quicker and easier for the signals in our brain to 

travel this way [82]. 

By contrast, if a path is damaged, unused, or is not well constructed in the first place, 

we start to use a different pathway. If we keep using that new pathway and continue to use this 

route more and more - this new way of thinking, feeling, or doing becomes automatic. In the 

meantime, the old pathway gets less and less use, eventually weakening [11]. In other cases, 

it may be possible to repair or rebuild blocked pathways. This process of rewiring the brain by 

strengthening existing pathways, making new ones, weakening old ones, and repairing broken 

ones is neuroplasticity in action. 

When we apply the neuroscience of learning to how the brain works, we can modify 

four variables to maximize the retainment of knowledge. Summarized as attention, generation, 

emotion, and spacing [86]. For us to be able to learn something, we need to be able to pay 

attention to it. If we can minimize the distractions, then we can maximize the learning, and we 

will not forget it. We nee1d to encourage the learner to generate meaningful connections and 

associations with what they already know – helping the learner to make that connection to 

previously learned patterns and the broader context [86]. If w00.0…00e attach emotion to 

learning – and help motivate the learner with rewards – they are much more likely to remember 

the information at a later date. 

It is essential to understand that neuroplasticity is not good or bad – it is just what the 

brain does. Neuroplasticity can result in significant changes, like when a child learns to cross 

the road safely, or when adults learn a new set of skills. On the other hand, it can result in 

unhelpful changes in the brain, when someone learns an unnatural way of thinking or a bad 

habit – like Mr Gage above. 
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2.3 Fundamentals of Machine Learning 

Learning is the acquisition of knowledge or skills and is one of the most basic features 

of intelligence [87]. Learning enables an agent – biological or artificial – to perform a task 

more efficiently than the rest of the population [87]. Since the development of Hebb’s postulate 

in the late 1940s, many descriptions have been developed to suit various AI topologies [88]. 

In 1959, Arthur Samuel defined AI as a "Field of study that gives computers the ability to learn 

without being explicitly programmed" [89]. The concept is relatively old, but it has gained 

much popularity in recent times in the scientific community. The simple reason for this is that 

until recently, the data needed to train AI was not available. 

Nowadays, there is a considerable increase in available and useable data. In fact, with 

the abundant number of digital assistants and talking computers, it would be easy to think the 

AI revolution is already here. When Google launched its flagship home assistant in 2016, CEO 

Sundar Pichai said computing is moving from the mobile world into an AI world. It is 

commonplace for companies like Google, Tesla, and Facebook to promote AI as breaking new 

ground. Whereas those at the forefront of research point out that there is much work to do and 

claim there are many key challenges to overcome before the real AI revolution begins – what 

we are experiencing is merely the illusion of AI [90]–[92]. Figure 2 depicts the relationship 

between the different AI techniques and some of the standard terms frequently used in these 

systems. 

 As noted, ML is a subset of AI which enables the computer to act and make data-

driven decisions to carry out a specific task. ML came into existence in the early 1990s. It 

shifted focus from the symbolic approaches it had inherited from AI and moved towards 

methods borrowed from statistics and probability theory [4], [93], [94]. These algorithms are 

designed in a way that they can learn and improve over time when exposed to new data. In 

ML, a machine retains information and becomes smarter over time. However, unlike a human, 

it is not susceptible to things like short-term memory loss, information overload, sleep 

deprivation, and distractions. 

Consider the problem of determining if an image contained a cat or a dog. When only 

considering the physical appearance between a cat and a dog, the difference can be a little grey. 

Of course, one could say that a cat has pointy ears, and dogs have floppy ears, but those rules 

are not universal. Between tail length, fur texture, and colour, there are many options to 

categories. 
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Figure 2: Some different terms commonly used in AI, Rules-Based Systems, ML Representation Learning, DL and Bayesian 
Networks. 

In the case of traditional computer programming, this means a lot of tedious rules that 

someone would have to write manually to help a computer to spot the differences between cat 

and dog. Conversely, ML is about making a machine learn like humans, and like any child, 

that means they must learn through experience. With ML, programs analyses thousands of 

examples to build an algorithm. It then tweaks the algorithm based on if it achieves its goal or 

not. Just like the cognitive development of a child, over time, the algorithm gets smarter and 

better at solving problems. That is how machines like IBM Watson can diagnose cancer, 

compose classic symphonies, or crush Ken Jennings in jeopardy [95]. 

Some algorithms mimic the way the human brain is structured with Neural Networks. 

DL harnesses the power of Deep Neural Networks. It merely takes the data connections of all 

the artificial neurons and adjusts them according to the data pattern. The structure of a Deep 

Neural Network is mostly the same as a Neural Network; there is an input layer, an output 

layer, and connected hidden layers [84], [85]. The primary function of Deep Neural Network 

is to perceive an input before performing a complex calculation. The result is an output that 

can be used to classify and solve a problem with many different categories. 
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Although DL is a popular choice, it is not the only type of ML algorithm available 

[40]. There are many types; Logistical regression, Support Vector Machine (SVM), and Naïve 

Bayes. For example, if we want to design a classifier to predict whether the weather will be 

good or bad, and all we know are the environmental conditions, the date, temperature, and 

atmospheric pressure. A high score indicates that the weather will be bad, and a low score 

suggests the weather will be good. In either case, it is difficult to tell the weather knowing the 

date or temperature alone. Identifying a parameter like atmospheric pressures alongside date 

and temperature would return more accurate results. In this case, the classifier would assign 

greater importance to atmospheric pressure than those assigned to date or temperature. 

Typically, these types of classifiers are used when the output gets categorized into at 

least two groups. While the differences between each ML algorithm can be subtle, it is 

essential to distinguish them as separate entities part of the same family. This is because they 

are best suited to different applications. Akin to the compartmentalized and interconnected 

structure of the human brain – each circuit has a different task. 

2.3.1 Machine Learning Paradigms and Methods 

The most common forms of ML are Supervised, Unsupervised, and Semi-Supervised 

Learning. While Supervised Learning is a relatively well-established form of ML, 

Unsupervised Learning and Semi-Supervised Learning, are regarded by some as still in its 

infant years. Although the more recent learning paradigms are gaining in popularity, most of 

the research utilizes Supervised ML methods. Figure 3 depicts three ML paradigms discussed 

in this Chapter and some examples of the different types of learning. 

ML of today differs from ML of the past. Born of pattern recognition and the theory 

that computers can learn without being programmed to perform specific tasks – things have 

changed quite a bit. Nowadays, data is everywhere and generated at an astonishing rate making 

the iterative aspect of ML more relevant. Complementing the rise of ML with advances in 

computing power has led to an enormous increase in intelligent mobility research. Even though 

new algorithms are published almost every few months [25], [96]–[101], these advances are 

failing to solve real-world problems. This is due in part to the high dimensionality of the 

working environment. That is not to say that the scientific community has not produced 

valuable contributions, but rather the reliability of the techniques used in intelligent mobility 

lacks confidence. 
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Figure 3: Three ML paradigms discussed in this chapter. Most of the research in this thesis is focused on supervised learning with 
a small diversion into semi-supervised learning. 

One of the exciting debates about ML is how safe do AV have to be before they are 

let free on the roads [102]. On one side, people are saying that these vehicles need to be 

perfectly safe [103]. When one thinks about this, it is somewhat strange, considering that 

people use cars that are inherently unsafe at any speed [104]. Another school of thought is to 

get them out there, and over time they will learn how to be better, and we will get safer vehicles. 

This argument can be reinforced by the fact that administrative bodies such as the 

Society of Automotive Engineers (SAE) and the National Highway Transportation and Safety 

Administration (NHTSA) have partnered up to develop a definition of autonomy [105]. The 

definition has five varying layers, starting after zero automation: Level One – Driver 

Assistance, Level Two – Partial Automation, Level Three – Conditional Automation, Level 

Four – High Automation, and Level Five – Complete Automation [106]. The first three levels 

still require a human operator, and the last two levels have high automation and do not require 

an operator at all. Many vehicles have standard Level One features, such as radar cruise control. 

Whereas, a more advanced vehicle, say a Tesla, is generally regarded to have high-Level Two 

automation. In all cases, they require the full attention of the operator, and can only operate in 

specific driving scenarios or structured environments. These systems do not make data-driven 

decisions. 

There is a big jump between the lower levels and Level Four and Five. In the higher 

levels, machines should make decisions based on the data they have learned and the 

information they encounter at any point in time. The majority of commercial applications 

currently in use – where agents that have to act and perceive the world – have little or no data-

driven decision-making involved [107]. In simpler terms, the action is not learned, and the 
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agent makes decisions based on rules rather than deriving a data-driven policy to make 

decisions.  

The march towards a future where these systems underpin most of society's decision-

making infrastructure is underway. So, we must understand the principles that will help us 

engineer for reliability. While it is ok for ML algorithms to misclassify a recommendation on 

YouTube, driving a car has a greater degree of gravitas. The reliability of the associated 

sensors limits the precision during operation. Data-driven ML plays a vital and integral part of 

solving some of the safety problems. Traditional ways of programming are not suitable for 

environments that need high dimensionality. As a result, researchers must rely on the different 

ML paradigms to fill the gap. Although it will not answer every question, they are the best tool 

available, given the complex problems that need to be solved. 

A. Supervised Learning 

In 1958 a psychologist called Frank Rosenblatt was inspired to create a single artificial 

neuron to perform binary classification tasks. His goal was to teach a machine to classify a 

single shape under his supervision [108]. Regarded as seminal work into Supervised Learning. 

Rosenblatt built a machine and wired it to a 400-pixel camera – he called it a Perceptron [109]. 

His experiments consisted of showing the machine images containing a triangle or a 'not 

triangle.' Depending on what each pixel saw, it would send a different electric signal to the 

Perceptron. If the total charge were above the threshold, it would send a signal to turn on a 

light, therefore indicating it saw a triangle. When the electric charge was too weak to hit the 

threshold, the light would not turn on. Rosenblatt used yes and no buttons to train the machine 

under supervision. Every time Rosenblatt pressed the no button, the machine would adjust the 

charge sent to the synapse of the Perceptron, and this changed the machine's threshold levels. 

This process improved the chances of the machine getting things right the next time; hence, 

the term Supervised Learning. 

Rosenblatt's Perceptron used a simple stepwise activation function as a decision 

boundary. Suffering from one shortcoming – it only learned when it got things wrong, and it 

started from scratch without any prior knowledge of what it was meant to learn. Fast forward 

to the 1990s, and ML shifts from a symbolic approach to a data-driven approach [93], [94]. 

Since researchers began creating an algorithm for computers to analyse large amounts of data, 

numerous tools have been developed. One such development is the SVM. Conceived by 

Vladimir Vapnik, it is regarded as one of the most useful tools in modern statistical ML. The 

SVM combines fundamental concepts and principles related to learning, well-defined problem 
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formulation, and self-consistent mathematical theory [110]. Arguably, it is one of the best 

approaches to predictive learning, and it compares favourably to other, more empirical 

methodologies based on instinctive, asymptotic, and biological arguments. 

The primary objective of Supervised Learning is to discover the pattern linking the 

inputs � to the outputs �, when � = {���, ��	}���  given a dataset D of size N – with labelled 

input-output pairs [111], [112]. In the simplest terms, each input value has a dimension vector 

of numbers that represent the data we want the ML algorithm to learn. Commonly referred to 

as features, the dimensional vector is the understanding of � the algorithm develops during 

training. From the perspective of �, the output, can be anything, but the assumption is that it 

matches a categorical or nominal variable from the dataset used during training. 

When the output � is categorical, the ML algorithm is regarded as a classification task, 

and when � is a real value, the algorithm is known as regression. In classification, the primary 

goal is to learn the pattern linking the inputs � to the outputs �, where � ∈ {1, … , �} and C is 

the number of classes [113]. If C equals two, the classification task is regarded as being a 

binary classification problem, and when C is greater than 2, it is viewed as being a multi-class 

classification problem. In a multi-class classification problem, the class can belong to two or 

more groups. When we use the term classification, we mean multi-class classification problem 

– unless stated otherwise. It can formalize this problem by making a function approximation 

where we assume � = ���	 for an unknown function �. If the objective is to learn the function 

given a labelled training set followed by making predictions, we can describe the predictions 

in terms of � as �� = ����	. In this case, the objective is not just to learn the training data and 

identify the pattern, but to make a prediction on data not encountered before. While somewhat 

misleading, it is called generalization, and refers to the generalization of data varieties and not 

the ability of the classifier to solve general problems. 

B. Semi-Supervised Learning 

Semi-supervise ML is a combination of supervised and unsupervised ML methods. 

Online active learning is the amalgamation of online ML and active ML. Generally regarded 

as two distinct and separate paradigms of ML. For ease of description and because of their 

application in a later section of this thesis, the two styles have been combined, as depicted in 

Figure 4, and classified as a form of semi-supervised ML. Many researchers are already 

exploring both these fields of science and their applications to obstacle avoidance using a 

monocular camera [114], estimating depth from monocular imagery [115] and free space 
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classification using fused monocular and LiDAR sensors [116]. Traditional methods of ML 

are useful for interpreting sensor streams, but they need large amounts of annotated data to 

learn. Furthermore, while conventional ML algorithms work well in one area, they often do 

not generalize to new situations never seen before [117]. 

 
Figure 4: Shows the process of online active ML. At first, the algorithm uses little data to make a classification. As a new instance 
is observed, the active Learning algorithm queries it. The online Learning Algorithm updates the Classifier. 

A solution to these issues is online active learning, where the intelligent mobile robot 

self learns and adjusts its perception of the surroundings as it encounters new data. The idea is 

to use a robust sensor stream to self-learn and improve the relative uncertainty of the new data 

it encounters. To understand online active ML, we examine both components independently. 

However, that requires an understanding of two different learning paradigms. Online ML is a 

form of supervised ML. online learning describes a technique where labelled data – that has 

just become available is added in sequential order to the dataset to update the classifier at each 

step [118]. In this technique, the classifier evolves forever, adding the new data it encounters 

and modifying the algorithm over time. 

Online ML is used where it is impossible to train the algorithm on the entire dataset – 

referred to as out-of-core algorithms. In terms of online learning, the information has not 

become available yet, and therefore it is not possible to update the classifier with the new data 

until it arrives. 

Conversely, active ML is a form of semi-Supervised ML that sits somewhere between 

Supervised ML and Unsupervised ML. In traditional methods of active ML, the algorithm 

queries the user for the label of the data it has just encountered [119]. Active ML is especially 

useful in situations where data is in abundance but is not labelled. It usually requires some 

labelled data to start, and then the user assists the algorithm as the new unlabelled data becomes 
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available. When combined with other ML methods, such as online ML, it becomes a powerful 

tool.  

C. Unsupervised Learning 

Not quite as prolific as Supervised Learning, Unsupervised Learning has an equally 

extensive and illustrious history. There is the distinct, Hebbian learning with its long-lasting 

influence over Neural Networks and ML paradigms [11]. And then the less apparent concepts 

by David Marr, who demonstrated an approach to brain function, grounded in an in-depth 

knowledge of the biological facts of the human mind. Marr’s work showed how the Purkinje 

cells of the cerebellar cortex played a vital role in the mind's central pattern generator. The 

central pattern generator is crucial to the initiation of human locomotion and plays a vital role 

in Unsupervised Learning [120]. His work demonstrated how the human body develops 

patterns for performing specific tasks and can be regarded as the blueprint for Unsupervised 

Learning. 

 Perhaps a less abstract but most notable contribution was from Geoffrey Hinton into 

a way of learning called the Boltzmann Machine [121]. The Boltzmann machine incorporated 

many concepts from statistics that now dominate density estimation methods and clustering 

[122]. The Boltzmann machine is a symmetrical Neural Network, where neurons make 

arbitrary decisions about being on or off. In doing so, they learn features in the data by 

composing binary vectors that map the data into either 0 or 1. 

More recently, the concept of clustering began to take hold. One technique of 

clustering partitions data into groups according to some criteria, transforming the data points 

to a higher dimensionality feature space [112]. Placing boundaries between the different 

groups – similar to an SVM – creates a divide between the higher dimensionality features and 

organizes it into a meaningful form. This type of unsupervised ML has been used to identify 

driver style [123]. Although this is not intuitively related to Intelligent mobility, the method is 

useful for studying driver policy [124]. K-means clustering is another form of Unsupervised 

ML and a form of vector quantization that is a popular choice in data mining. The process aims 

to drive a partition between n observations in which each observation belongs to the cluster 

with the nearest mean. This form of Unsupervised Learning is a popular choice for lane-

detection [125], [126], however, with the onset of DL, it is beginning to be superseded [127], 

[128]. 
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Unsupervised Learning is a much less structured problem than Supervised Learning 

and, therefore, more prone to making mistakes. The benefits of using such a system are that 

not all data needs to be labelled, so it closely represents the way humans learn critical skills. 

Unsupervised Learning has gained in popularity because of its ability to find previously 

unknown patterns in data. Also known as self-organized learning, its primary function models 

probability densities of given inputs to categorize its outputs [129], [130]. Unlike Supervised 

Learning, where the inference is a conditional probability distribution. Unsupervised Learning 

is used to find a prior probability distribution that is derived purely through deductive 

reasoning. 

2.3.2 Regression & The Support Vector Machine 

Regression is a statistical tool used to determine the relationship between two 

variables. Usually, one variable is dependent – denoted by a � – and a series or single changing 

independent variable – denoted by an X. The most common form of regression is linear 

regression, where a vector, with the best fit to the dependent and independent variables, 

minimizes the sum of squared distances between the correct data and that of the line. Other 

types of regression, multiple linear regression and non-linear regression work using the same 

principle of dependent and independent variables. Although multiple linear regression more 

closely resembles linear regression, there is a distinct but subtle difference between the three 

forms. 

The generalized models that describe the three forms of regression are relatively 

simple; Linear regression � = � + �� + �, Multilinear regression � = � + ���� … + ���� 
and a typical Polynomial Non-linear regression � = � + ����� … + �����. Linear regression 

was the cause of one of the most significant scientific arguments of the 1800s. In 1805 Adrien-

Marie Legendre published his seminal work ‘New methods for determining the orbits of 

comets’ where he described the basis of linear regression [131]. Four years later, in 1809, Carl 

Friedrich Gauss published work in the same field, where he described remarkably similar work 

on regression [132]. Gauss claimed to have invented the least-squares regression in 1795 and 

considered it so inconsequential and self-evident that he assumed someone must have 

discovered it before. Setting off one of the most renowned arguments in the history of 

mathematics, where Legendre disputed that Gauss deserved credit - it led to lifelong hostility 

between the two academics. 
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Some centuries later, and Linear regression has found a home in many different fields 

of study. One such field is Flock Traffic Navigation (FTN) – the study of traffic congestion 

using multi-agent technologies. In [133], researchers applied linear regression to FTN to study 

the response of agents. During the study, agents were instructed to cooperate with others to 

improve travel time by forming flocks. While not quite the field of Intelligent mobility, 

researchers in [134] studied the influence of agents interaction on neighbours by exchanging 

social beliefs. Although this research focused on social interaction, the same concepts are 

transferable to traffic management and driver policy. 

Linear regression can be used for many different applications. However, in the real 

world, it is somewhat uncommon that a single dependent variable can have a relationship with 

a single independent variable. This is the case for multilinear regression that explains a 

relationship – both in a linear and a non-linear form – and works from the assumption that 

there is a relationship between every value of the dependent variable � associated with the 

multiple independent variables �. The regression line for � explains variables ��, �� … ��  – 

when defined as � = � + ���� … + ���� – and describes how the mean response changes. In 

[135], researchers described “descriptive, predictive and causal model,” describing how agents 

fight simulated forest fires. As with linear regression, this research is not case-specific but can 

be applied to driver policy and forecasting multi-agent response. 

Traditional linear regression relates two variables with a straight line. In contrast, non-

linear regression fits a non-linear line – usually a curve – linking a relationship to � when � is 

a random variable. The objective is to reduce the sum of the squared error so that the function 

best fits the data, where the line emulates Log, Trig, Exp functions, or other curve fitting 

methods. [136] reported on a non-linear task-oriented model for motion in the mobile 

environment of a robotic manipulator. While not quite driver policy or FTN, non-linear 

regression shows how interconnected and interrelated agents are modelled. 

The simplest case of the SVM is when the data is linearly separable. Commonly 

referred to as binary classification, the goal is to find a decision boundary (Hyperplane) that 

linearly separates two different classes. Figure 5 depicts linearly separable data, a decision 

boundary, support vectors, and the margin. In this case, the decision boundary can be described 

as ��� + � = 0. Where �� is the transformed weight vector, � is the input vector, and � is 

the bias. Anything above the decision boundary falls into one class, and anything below falls 

into another class. These margins can be described as ��� + � = 1  and ��� + � = −1, 

respectively.  
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Labelling the margins in this way facilitates the description of the equation as a 

discrete function ���	 = "�#$���� + �	. Subsequently, we can determine if a data point 

belongs to one class by checking that ����� + �	 % 1 or the other class ����� + �	 & 1. 

This accommodates for the margin on either side of the decision boundary and the nearest data 

points for both classes. If we scale the data such that anything on or above the boundary can 

be described as ��� + � = 1 and anything on or below the boundary can be described as 

��� + � = −1. 

 
Figure 5: Shows linearly separable data, a decision boundary, Support Vectors, and the Margin. In this case, the data falls into 
one of two Classes. 

If we wish to find the shortest margin �'�	 width, we first acknowledge that the two 

vectors are parallel and therefore share the components w and b. Selecting a point ��on the 

lower margin ��� + � = −1  we can say that the corresponding point on the opposing 

boundary ��� + � = 1 can be described as �� = �� + '�. Solving for ' we find: 

 ���� + � = 1 (Equation 1) 

From before we have �� = �� + '� making it possible to expand out equation 2 to 

become: 

 ����� + '�	 + � = 1 (Equation 2) 

 ���� + � + '��� = 1 (Equation 3) 
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If ��� + � = −1 we can simplify equation 3 to become: 

 −1 + '��� = 1 (Equation 4) 

 '��� = 2 (Equation 5) 

 ' = 2
��� = 2

||�||� 
(Equation 6) 

If the shortest distance between the two margin boundaries is, '�, we can expand on 

equation 6 and say. 

 '� = �
||+||, � = �

-+.+. (Equation 7) 

A. Support Vector Kernel 

The SVM is a supervised form of ML identified by Vladimir Vapnik in 1963 [110]. 

As the name describes, the vector is supported by the data. The vector describes an algorithmic 

approach to solving two-class or multi-class classification problems. An essential property of 

SVM is that any local solution simultaneously describes the global optimum since the 

determination of model parameters corresponds to a maximum margin (⊂ convex 

optimization) [120]. Within SVM, the margin is defined as “the perpendicular distance 

between the decision boundary and the closest of the data points”[137][p327]. The 

maximization of the margin leads to the decision boundary that allows the classification of 

data points accordingly. Even though the SVM was designed as a two-class classifier, the 

different modifications, such as one-versus-the-rest or the one-versus-one approaches, allow 

classification of K > 2 classes.  

Regression models are not too dissimilar to the SVM. In regression problems, the best 

fit line describes the relationship between an independent and dependent variable. The function 

that describes the best fit line is similar to the kernel function of the SVM [138]. The kernel 

function is a type of transform function applied to each data point. It maps the original non-

linear observations into a higher-dimensional space so that the decision boundary can be easily 

found. Unlike SVM classification, regression models are predictive models that are applied to 

new data where we do not have the answer. When the kernel function of an SVM is linear, the 

model responds in a similar way to regression. However, it is quite rare in the real-world that 

the relationship between data is linear. This is the point of the kernel function; it uses a linear 

classifier to solve a non-linear problem. It transforms non-linear data into a linear plane so that 

the function can be applied. 
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Mathematically described as 0���  �1	 =< ����	 ���1	 > , where 0  is the kernel 

function, ��  �1 are the dimensional input variables, and � is the mechanism for mapping the 

dimensional input variables from the non-linear to the linear space using the dot product. This 

requires the calculation of ����	 and ���1	 first, resulting in a two-step process that can be 

computationally expensive. These functions can have different types; Linear, Non-linear, 

Polynomial, Radial Basis Function (RBF), and Sigmoid. 

B. Hyperplanes 

Both regression and the SVM has been a favourite of the scientist working in the field 

of AI. For example, regression has been used for lane detection [139], whereas the SVM has 

been used for people detection the past [140]. However, to truly understand both we need to 

gain an understanding of hyperplanes. The Hyperplane is the resulting decision boundary that 

maximizes the margin between the two data types. Both margins and the Hyperplane are found 

using quadratic programming, where a function is maximized subject to one or more 

constraints [141]. Vladimir Vapniks genius comes into play here, as having used the kernel 

function to map non-linear observations into a higher-dimensional space and identified the 

optimal Hyperplane; resulting in data that is linearly separable. In ideal circumstances, the 

SVM should produce a hyperplane that linearly separates the data points into two distinct and 

separate classes. It is not always possible to do this, and more often than not, a hyperplane is 

derived to maximizes the margin and minimizes the misclassifications. In this case, we use a 

non-linear region to separate the groups more efficiently and then apply the kernel trick to map 

the non-linear vector into a linear plane. 

2.3.3 The Artificial Neural Networks 

ANN or Neural Networks are a form of supervised ML that perform classification 

tasks by learning patterns from previously labelled examples. Generally, computers are good 

with repetitive calculations and detailed instructions but are bad at recognizing patterns [142], 

[143]. Neural Networks solves this problem by breaking intricate patterns down into a series 

of simpler patterns [40]. For example, when a machine must decide whether an image contains 

a particular object, a Neural Network uses the edges to detect different features of the class in 

question. Only upon combining all the features to reconstruct the target class can the network 

estimate what the object is [84], [85]. In the most basic form, an ANN is a computation model 

used to solve problems by recognizing the pattern in a specific dataset. There are many 

different types of ANN; however, not all of them are relevant to this research. 
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A. Feedforward Neural Networks 

The Feedforward Neural Network is the simplest form of an ANN [109], [144]. In 

these Neural Networks, data travels from start to end in one direction only. The architecture 

of a Feed-Forward Neural Network – depicted in Figure 6 – is relatively straightforward; there 

is an input layer, an output layer, and connected by one or more hidden layers [84], [85]. Each 

connection – like the synapse of a biological neuron – transmits information to the proceeding 

neurons – Feed-Forward propagation – before resulting in a score [145]. When implementing 

a Feed-Forward Neural Network, the input signal is a real number representing the data to be 

classified [146]. 

 
Figure 6: Shows a feedforward neural network is an ANN in which connections between the nodes do not form a cycle. The 
feedforward neural network was the first and most straightforward type of artificial neural network. 

The Feedforward Neural Network was developed to correct the inaccuracy of the 

perceptron developed by Frank Rosenblatt [40]. Primarily used by supervised ML paradigms 

where the data to be learned is neither sequential nor time-dependent. These networks showed 

that a layered web of perceptrons out preformed a single perceptron when faced with complex 

multi-class problems [40]. The main shortcomings of Feedforward Neural Networks are their 

susceptibility to noise, making it easy for them to misclassify. Typically, when analysing 

simple problems, essential classification tools like perceptron's are good enough. However, 
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when data has many different inputs, Neural Networks start to outperform the standard 

classification engines as the problem becomes more complicated. 

Although the original goal of AI was to replicate the human brain as a whole, over 

time, the attention has shifted to solving specific tasks using Neural Networks. Some regard 

this as a deviation from their original objectives of AI. However, others take a compartmental 

view, like those views of the brain, that certain parts perform certain tasks, and therefore 

certain networks are suited for specific tasks. 

B. Convolutional Neural Networks 

Convolutional Neural Networks (CNN) are a type of Neural Networks frequently used 

for the classification of images. While possible to use alternative ML algorithms like the SVM 

[40], [147], CNN's have proven to be a handy tool for this process [148]. One of the primary 

challenges with image classification tasks is data representation. In the most basic terms, 

digital images are an arrangement of pixels in a particular order with a specific colour attached 

to them. 

(A) 

 

(B) 
 

Figure 7: (a) Showing the Red layer of the true colour image of the number four. (b) Shows the flattening of the layer out into a 
single array lining up one column after another. 

For example, true colour images are composed of an m-by-n-by-3 matrix. Each layer 

of the matrix denotes a different colour component, red, green and blue. If one changes the 

location of either red, green or blue element, then the image changes as well. Conversely, if 

one takes either one of the red, green and blue layers from the array, the image will still be 

present but in one single colour. 
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Consider the number four in full true colour splendour. If we take the red layer and 

separate it from the others, we still have the number four, but in the red colour only – as per 

Figure 7 (a). If we were to use an ANN to process this image, it would require flattening the 

image out into a column vector [149], lining up the data one column after another – as per 

Figure 7 (b). If the data is processed as a column vector and we do not know the image size or 

resolution, the neural network cannot easily understand the representation – it loses the spatial 

arrangement of the different pixels that compose the image. 

 
(A) (B) 

Figure 8: (a) Shows the original data of image four. (b) Shows the reduced horizontal dimensions of the image data still retains 
the spatial arrangement. 

CNN's address this issue through a series of down sampling and pooling filters. They 

retain the relationship between data points when they convert the image to representation. If 

we extract the features from the original image, such that the spatial arrangement is preserved 

[150], it makes the classification process easier. This process is depicted in Figure 8 (a) and 

(b), where the down sampling factor modifies the original data. Once acted up, the data reduces 

the dimensions of the image, while still retaining the spatial arrangement. 

It should be noted that the down sampling factor we use in Figure 8 take two 

consecutive horizontal pixels, and therefore only affect the horizontal dimensions of the data. 

Moreover, the leftmost and rightmost data points are only acted upon once by the down 

sampling factor. In consequence, data on the right and left edge of the image is influenced to 

a lesser degree than data towards the centre of the image. 

Reducing the dimension of the image allows us to retain the relationship between 

image data and representation the network learns. On occasion, we might not want to reduce 

the dimensions of the image but rather increase them. In the situations where we do not want 

to reduce the dimensionality, we pack out the image with zeros, thus reducing the impact on 
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the peripheral data points [151]. Alternatively, in situations where we want to reduce the 

dimensionality and the influence the down sampling factor have on peripheral data points, we 

take multiple weight in a single turn and merge the two images [151]. Figure 9 (a) and (b) 

show the image data after having been acted on by the weight values (1 0.3) and (0.5 1), 

respectively. In both cases, the dimensionality has reduced the image data from a 17 by 4 

matrix to a 17 by 3 matrix. Combining Figure 9 (a) and (b) produces an image with reduced 

dimensionality that retains more information about the original image than a simple column 

vector representation. 

 

(A) (B) 
Figure 9: (a) & (b) Show the image data after having been acted on by the down sampling factor (1 0.3) and (0.5 1), respectively. 
In both cases, the dimensionality has reduced the image data from a 17 by 4 matrix to a 17 by 3 matrix. 

 Up until this point, we have been using a down sampling factor that takes two 

consecutive horizontal pixels. In most cases, there is a requirement to maintain the spatial 

arrangement in both horizontal and vertical elements of the image [151]. Achieved using two 

rows of two consecutive horizontal pixels or a 2 by 2 matrix. It should be mentioned that the 

same dimensionality reduction that occurs on the horizontal plane also occurs on the vertical 

plane, thus further reducing the size to a 16 by 3 matrix – as per Figure 10 (a) and (b). 

This process of extracting the features from the image while retaining the horizontal 

and vertical spatial relationship is vital so that the network can understand how the pixels are 

arranged. In its purest form, a CNN is a DL paradigm that can take a set of images, assign a 

down sampling factor to various aspects in the image, max pool the down sampled image data 

before passing it through the fully connected neural network to make a classification [152]. 

During training, a CNN learns to classify an image from previously labelled data [153] using 

this process. Much like the description of neural plasticity set out by Hebb, during training 
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when the predicted output does not match the output that is known to be correct, the weights 

change. As the network trains, the difference – often referred to as loss – is reduced using back 

propagation [40]. During this process, the network becomes familiar with the features up until 

the predictions closely match the inputs that are known to be correct. While the network 

weights optimise during training, the down sampling and max pooling layers are chosen 

depending on the data and the process the network is designed for.  

 

(A) (B) 
Figure 10: (a) Shows the original image of the number four. (b) Shows the same image with the down sampling factor acting on 
both the horizontal and vertical data points. Note the overall reduction in dimensionality on the image.  

 The architecture of a CNN can be generalized as per Figure 11 [152]. In Figure 11, 

there are three main elements of the CNN; Convolutional Layers, Pooling Layers and the 

Output Layer [154]. Of course, there are other arrangements of the elements and some 

networks that use a modification of the layers, but by in large, they can be described this way. 

The Convolution layers function as per the description above. Obviously, the image and the 

down sampling matrix size are defined, with the latter defined to extract specific features from 

the data.  

 A pooling layer is added periodically between the convolution layers. The purpose of 

pooling is to aggregate and reduce the size of the layer before it. Preformed on each layer of 

the image, pooling facilitates the retention of the layers of the data while reducing the size by 

down sampling the image. Max Pooling is the most commonly used pooling layer [155]. Other 

common pooling layers are the Average pooling, GlobalMax pooling, and global average 

pooling layer. 

 Max pooling is a sample-based discretization process based on the maximum value 

within a specific window. Average pooling performs the same process using the average found 
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within a specific window. A similar process occurs during GlobalMax and global average 

pooling layers. In all cases, the purpose is to downsample an input representation to reduce the 

image size. The process will inherently make assumptions about features contained in the 

window [156]. 

 
Figure 11: The generalized architecture of a CNN showing the three main elements of CNN; Convolutional Layers, Pooling 
Layers, and the Output Layer. Note the process that occurs between the different layers of the network [152]. 

 

 
Figure 12: Shows the down sampling process when using a Max Pooling layer filter with dimensions of 2 by 2 acting on a 4 by 4 
sample of data from an image representation. 

 Consider a 4 by 4 sample of data from an image representation. Passing a 2 by 2 filter 

over the input data at incremental steps of 2 pixels per stride with no overlapping, we can 

extract certain desired features. In the case of the Max pooling layer, the region that the 
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window passes over extracts the maximum value to the output matrix. The resulting output 

matrix contains the maximum value from each window for a region. This process is depicted 

in Figure 12. 

 The final layer of the generalized CNN is the output layer. It comes after multiple 

layers of convolution, data padding, and down sampling of the image representation. At the 

output layer, the different classes in the network are formed. We need the output layer since 

the convolution, and pooling layers are not capable of generating a class.  

To generate the output equal to the number of classes, we use a fully connected Neural 

Network. In the output layer, the network uses an activation function like Rectifier Linear Unit 

(ReLU), a loss function like categorical cross-entropy, to compute the error in classification. 

During this process, the fully connected layer learns the representation features passed from 

the convolutional layers using forward and backpropagation, just like a Neural Network. 

C. Activation Functions 

The function that acts on the inputs of an ANN is called an activation function. Also 

known as a Transfer Function, it takes many different forms. The Activation Functions of 

neurons are the same for each element of the network, so it is the weights and bias that 

influence the score. 

  
Figure 13: Shows the Binary Step activation function [157]. Figure 14: Shows the Bipolar Step activation function [157]. 

McCulloch and Pitts first proposed the basic structure for modern-day Neural 

Networks in 1943 [74]. Quite different to the Perceptron, there are three fundamental elements 

define a Neural Network; an information processing element, the organization of the 

connections (fully connected or convolutionally connected), and the training techniques used 

to update the weights and bias (loss function). 
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The biological neuron proposed by McCulloch and Pitts processes inputs using an 

integration function related to the input of a neuron. Contemporary Neural Networks, on the 

other hand, use a range of different non-linear activation functions. It should be noted that if 

we use a linear activation function, the obtained output would be the same as that of a single 

layer network. For this reason, the activation functions are almost always non-linear, some of 

which we describe below and shown in Figure 13, 14, 15 and 16. 

 The binary step activation function [157] is widely used in single layer network to 

map the input to output in binary form (1 or 0) – depicted in Figure 13 and defined as [158]: 

 ���	 =  41
0

�� � % 0
�� � < 05 (Equation 8) 

 Bipolar step function [157] where the threshold value is represented by a 0 is widely 

used in a single layer network to convert the input to an output that is either +1 or -1 – depicted 

in Figure 14 and defined as [159]: 

 ���	 =  4 1
−1

�� � % 0
�� � < 05 (Equation 9) 

The sigmoid function [160], depicted in Figure 15, focuses on the relationship between 

the function’s value and the value of the derivative. This focus reduced the computational cost 

required by the network. Widely used by networks that apply backpropagation, sigmoid 

function falls into two different groups – Binary or Bipolar sigmoid function. 

The Binary Sigmoid – also known as the unipolar sigmoid function – uses a steepness 

parameter, and outputs the values in the range of 0 to 1. The Bipolar sigmoid uses the same 

steepness parameter but outputs values in the range of -1 to 1. The Binary Sigmoid and Bipolar 

Sigmoid can be defined as [159]: 

 "�#��	 =  1
1 + 6789 (Equation 10) 

 "�#��	 =  1 + 2
1 + 6789 (Equation 11) 

DL and CNNs have increased the popularity of the ReLU activation function [161]. If 

one processes images or performing research in the field of computer vision, ReLU is usually 

an excellent first choice [162]. The unique characteristics of ReLU is a linear identity for all 

positive values and a zero value for negative values. 
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Figure 15: Shows the Sigmoid activation function [160]. Figure 16: Shows the ReLU activation function [161]. 

 These characteristics mean that ReLU is frugal on computational resources; takes less 

time to train and run; converges faster so that the slope does not plateau when the inputs get 

large, and – perhaps the most important – lacks the vanishing gradient problem suffered by 

some of its counterparts [146]. The vanishing gradient problem can be regarded as a major 

shortcoming of Feedforward Neural Network. Up until 2016, when researchers presented 

ResNet, the majority methods of dealing with the Vanishing Gradient problem was through 

hardware [148]. Before ResNet, when training a network, the error gradient would decent at a 

faster rate at the beginning. Towards the end of the training, the network is unable to propagate 

useful information from the output, and the error descends at a slower rate. ReLU overcame 

this issue through its unique characteristics when handling negative inputs – it fires for positive 

inputs only. The ReLU activation function depicted in Figure 16 can be described as [163]: 

 ���	 =  max ��, 0	 (Equation 12) 

Unlike the biological nervous activity that ANN is meant to model, most activation 

functions fire all the time. Contrary to this, nervous activity is sparse, and the different neural 

circuits within the human brain are activated at different times. For example, the Occipital 

Lobe in the cerebral cortex is primarily responsible for vision. Next to the occipital lobe is the 

Parietal lobe [164], whose primary function is understanding spatial relationships between 

objects. While both functions frequently fire together, there are occasions where they fire apart.  

The ReLU function replicates this process when handling negative inputs that equate 

to zero. So, when ReLU fires, it is more likely that the artificial neuron is processing 

meaningful aspects of the problem rather than information that will not help at all. The effects 

of sphericity do not always complement ReLU, and on occasion, can detract from its use. Since 
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the slope of ReLU equates negative ranges to zero, once a neuron goes to zero, it is unlikely 

to recover. Although these neurons do not necessarily complement the problem in 

discriminating the input, over an extended period, the zeros add up. In the end, we find a large 

part of the network does nothing. This effect, commonly referred to as dying, usually occurs 

when the learning rate is too high, or there is a significant negative bias [165]; however, a 

lower learning rate often mitigates the problem. 

D. Loss Function 

The loss function probably has the most significant impact on the performance of the 

Neural Network. The primary purpose of the loss function is to measure how good the network 

performs with respect to the target and expected class [166]. At the start of training, the 

difference between the two is significant. In ideal circumstances, over time, the Loss will drop 

towards zero. While the Loss rate of change is dependent on the weights and bias, the actual 

function returns a scalar that describes how good the network performed as a whole. It is not 

a vector. In its purest form, the Loss function optimizes the parameters of the Neural Network 

by minimizing the loss. 

In practice, we calculate the loss by matching the target class value to the predicted 

class value generated by the network (a probability). Then, the weights and biases alter using 

the gradient descent, so the loss is minimized. There are various loss functions available 

depending on both the objectives and the activation function used in the network. They fall 

into one of three groups: Regression Loss Functions, Binary Classification Loss Functions, 

and Multi-class Classification Loss Functions and are depicted in Figure 17. 

 
Figure 17: The Regression Loss, Binary Classification, Multi-class Classification loss function and their subdivisions [167]. 

Of specific relevance to this research are the mean squared error loss function, binary 

cross-entropy loss function, and the multi-class cross-entropy loss functions. The mean 

squared error loss function is used in most regression problems. Regarded as the favoured Loss 

function for the maximum likelihood estimate, where the distribution of the target class is 



MULTIMODAL MACHINE LEARNING FOR INTELLIGENT MOBILITY 40 

40 

Gaussian [168]. In practice, we determine the mean squared error from the average of the 

squared difference between the predicted and actual class. Returning an ideal value of zero, 

the function always returns a positive result that influences the significant errors. 

For binary classification problems, the Binary Cross-Entropy Loss Function is the 

ideal choice. It is mainly used when the target class can be zero or one. In practice, it is the 

favoured loss function under the inference framework of maximum likelihood [168]. When 

the binary cross-entropy loss function calculates a one, the average cost between the actual 

and predicted the average difference is summarized. Conversely, the score is minimized when 

a perfect cross-entropy value of zero. 

Multi-class Cross-Entropy is the Loss function most used for multi-class classification 

problems. Somewhat like binary cross-entropy loss function, the intended application is where 

the target values are in the form {Class 1 Class 2, Class 3…Class n}. In this case, each class 

is assigned an integer value that indicates the likelihood, making it the preferred loss function 

under the inference framework of maximum likelihood. In practice, the score is summarized 

in the same way as the binary cross-entropy loss function. Whichever loss function is used, it 

needs to match the activation function since the loss benefit is continuously being evaluated, 

when comparing the predicted output to the actual output. 

E. Backpropagation 

Back Propagation is the mechanism in which loss is minimized. This is done by 

making small adjustments to weights and bias during the training process. It influences the 

gradient descent until the lowest acceptable loss is reached [146]. It assists these changes and 

enables a network to learn a perimeter by understanding how small changes in values for 

weights and bias affect the output. When a small change in value returns a small change in the 

output, only a small change in the network has occurred. Networks that only ever make small 

changes do not have the opportunity to learn and never make the giant network change that is 

required for autonomous decisions [169]. Moreover, the gradient of the network's output 

concerning the parameters in the first layers becomes extremely small; hence, the term the 

vanishing gradient problem [170]. 

The vanishing gradient problem is mainly dependent on how the activation function 

passes inputs into a small output range in a non-linear manner [170]. Sigmoid functions, for 

example, map real numbers onto a range between 0 and 1, resulting in large regions of the 

input mapped onto a small range. Even a significant change in the input results in small 
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changes in the output. For example, the first layer of a Deep Net passes a vast region of an 

image onto a small output region, which in turn is passed onto the next layer until it reaches 

the output. The net result is a small change in output, even though a significant change in input 

has occurred. Non-linearity's stack up, amplifying the problem, and forces the gradient ever-

smaller [170], [171]. 

In 2006 Hinton, Osindero, and Yee-Whye Teh published breakthrough work on the 

vanishing gradient point problem [85], [171]. In real-world terms, the gradient can be thought 

of as a hill and the training process as a wheel rolling down the hill. The wheel rolls fast along 

a surface with a large gradient and slows along the low gradient. The same is true of a Deep 

Net – at the early stages of the net when there is a small learning curve, and the progress of 

the net is quite slow. However, towards the end, where there is a much larger learning curve, 

the net learns at a much quicker rate [171]. 

Giving way to a singularity, the layers at the start of the net are responsible for 

identifying simpler patterns and laying the building blocks of an image. If the layers at the start 

of the net misperceive things, then the next layers also get things wrong. When a net wants to 

learn, it starts looking at errors to identify the weights and bias that are affecting the output, 

before attempting to reduce the error by changing the weights [172]. This process is known as 

backpropagation and is used for training nets. It removes the issues created by the vanishing 

gradient problem [172]. 

2.4 Multimodal Machine Learning 

Despite numerous developments in decision-making algorithms, the majority were 

demonstrated in tightly controlled settings with well-defined outcomes, performs singular 

tasks and use only one sensor stream [173]. For AI to perform as desired – that is to support 

humanity or even to supersede human intelligence – algorithmic developments should be 

adapted to perform in real-world environments. The decision-making process of an agent in 

such an environment is extremely complicated due to the interactions with other unpredictable 

agents, and the need to adhere to multiple constraints. Therefore, developing agents that make 

decisions using context information gathered from real-world environments, remains a 

mammoth task. The context of a scenario can be captured from various types of instruments, 

measurement techniques, and sensors. Also known as Multimodal sensing, it’s where multiple 

sensor modalities capture context information about the environment there working in [174]. 

Multimodal sensing is the effective utilization of diversity captured by multiple heterogeneous 
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sensor streams [175]. Commonly referred to as sensor data fusion, the challenges can be 

categorized into two groups [116], [174]: challenges at acquisition level and challenges due to 

the uncertainty of data sources. Acquisition level challenges include differences in physical 

units of measurement (non-commensurability), differences in sampling resolutions, and 

differences in spatiotemporal alignment. [116] reported on a process of sensor data fusion 

using a Gaussian process. 

 
Figure 18: Shows the sequence of steps in the Gaussian process resolution matching algorithm. On the left side of the image is 
the high-resolution camera data, and on the right is the lower resolution LiDAR data [116]. 

 The process, depicted in Figure 18, addressed some of these issues regarding fusion 

and a method of improving the resolution mismatch. The challenges due to uncertainty in data 

sources include noise such as calibration errors, quantization errors or precision losses, 

differences in the reliability of data sources, inconsistent data, and missing values. Overcoming 

heterogeneity of different sensors through effective utilization of redundancy across the 

sensors is the key to fusing different sensor streams. 

2.5 Applications of Machine Learning in Intelligent Mobility 

For automotive manufacturers, AV will shape the future of driving and their 

manufacturing strategy. In an industry that has been historically slow to react to change, when 

AV becomes ubiquitous, it is more likely than not that technology company will be at the 

forefront. Typically AV are composed of three technological pillars listed below [116], [176], 

[177]. Although the communication aspect of connected autonomous vehicle (CAV) can be 

considered a fourth pillar, it was regarded as beyond the scope of this research and, therefore, 

not reported. 
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1. Sensing and perception – the primary component – are responsible 

for understanding the surrounding environment the vehicle 

encounters. Logged data is used to make decisions about the 

direction of travel, obstacles the vehicle encounter, accelerating, and 

retardation [116], [176]. 

2. Localization and mapping is the second technological component 

driving AV [178]. While GPS can be used for this purpose outdoors, 

it ceases to function effectively in indoor environments. Therefore, 

localization performed by mapping the surrounding environment 

and comparing it against the historical data is regarded as a superior 

method [116], [176]. 

3. The final technological component is Driver Policy. Driver Policy 

is responsible for deciding the direction of travel when the vehicle 

interacts with other road users. When to stop, yield to other road 

users merging with traffic and over overtaking other vehicles are all 

dictated by driver policy [116], [176]. 

With the advances in autonomous technology, many autonomous driving competitions 

have been promoted by different bodies to accelerate the development of AV. VisLab 

Intercontinental Autonomous Challenge (VIAC) was one such competition that ran from July 

20, 2010, to October 28, 2010. The challenge aimed to stress-test the current technology in a 

unique event - a 13,000 km trip starting in Italy and ending in China. Traversing remote areas 

in Russia, Kazakhstan, and China - for which no map was available. Part-funded by the 

European Research Council (ERC), the challenge showed that it was possible to transport 

goods between two continents with minimal human interaction [36], [177], [179], [180]. 

Further north of Italy, there was MadeInGermany and Spirit of Berlin. Both vehicles 

were the first cars licensed for autonomous driving on the streets and German roads [181]–

[183]. Since initial conception, both projects have come a long way in developing technology 

for driver assistance as in [182], [184], and systems for fully AV as in [185]. Both vehicles 

were equipped with GPS, three laser scanners at the front and rear of the vehicle, several high-

resolution cameras, and multiple radars. Perhaps the most renowned research group to come 

from Germany is the AnnieWAY autonomous platform at Karlsruhe Institute of Technology. 

The AnnieWAY autonomous platforms have been driven entirely autonomously for over 100 

km without human interaction [186]–[188]. The vehicles use LiDAR, radars and stereo 
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cameras to develop the Karlsruhe Institute and Toyota Technological Institute (KITTI) dataset 

[189]–[191]. 

Outside of the northern hemisphere, research by Toyota has shown promising results 

using a technology called Intelligent Transport Systems (ITS). ITS connects vehicles with 

other vehicles, pedestrians, and the road. It relays information from LiDAR, Radar camera, 

and GPS. Toyota’s semi-autonomous platform has been engineered in such a way to prevent 

accidents [192]. 

Riddled with strict rules of operation and a severe lack of legislation, AV’s are 

restricted in what they can do. Outside of the field of AV, where the rules of operation are not 

quite severe, there have been significant advancements in the application of ML to Intelligent 

mobility. For example, assistive autonomous robots that help humans in day-to-day tasks are 

becoming increasingly popular in domestic and industrial applications. Indoor cleaning robots 

[193], [194], surveillance robots [195], lawn mowing maintenance robots [196], [197], and 

indoor personal assistant vehicles for the disabled [198] are a few applications of ML for 

Intelligent mobility. Soon, one of the most popular consumer applications of mobile robots 

will be self-driving cargo vehicles [199]. 

While several automobile manufacturers have set targets to launch commercially 

available fully autonomous driverless vehicles by 2020. Vehicles that are capable of roaming 

without human intervention are a distant reality that will require extensive research effort to 

make them a reality [200]. Although AV, for the most part, performs human-like control, they 

lack the data-driven decision-making ability needed for them to operate on their own [107]. 

2.6 Summary 

Many cognitive pathways are employed to survey a visual scene before judgment, and 

associated action is made. During this period, objects in the sensory range are identified and 

classified. The sound, neck, and extra-ocular muscle contribute to this ability to geo-locate 

through a form of sensor data fusion, using biological signals. When the Occipital lobe 

becomes stimulated, dopamine and other neurotransmitters flood the nucleus accumbens and 

the central nervous system forcing the hippocampus to recall memories relating to the objects 

they see. For example, dopamine, a neurotransmitter that helps control the reward and pleasure 

centres of the brain, muscle innervation, and emotional response, enable humans not only see 

rewards but to take action to move towards them. Through reuse, the connections we form, 
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become robust and more relevant. In turn, we come to rely on these connections, adding 

gravitas or weight to the particular circuit.  

Typically, an ANN – commonly referred to as Neural Networks – is a computer 

algorithm that imitates the biological function of the human brain. It contains virtual neurons 

that arrange in interconnected layers. Each artificial neuron passes on information by 

performing calculations in a similar way to the human brain. In the neural network, the input 

to each neuron is acted on by a function (activation function) that generates an output with 

typical values between 0 and 1. 

The changing and shaping of connection in our brain is referred to as neuroplasticity. 

Neuroplasticity is the template that Neural Networks. mimic. Without this concept, we would 

not have modern-day CNN. It allows for a neural circuit to adapt. Conceived by Donald Hebb 

in his now-classic Hebb's postulate, it states that when two neurons fire at the same time, the 

connection between them is strengthened – becoming more likely to fire again in the future. 

This concept became the foundation for what we regard as the foundations of AI – neural 

networks. 

AI is a broader umbrella under which ML, Representation Learning, and DL come. 

ML – the main subset of AI – can be broken down into two main groups – Supervised ML and 

Unsupervised ML. Even though new algorithms into ML are published almost every few 

months, it can be said that these advances fail to solve the real-world problems due to the high 

dimensionality of the working environment. This is not to say that the scientific community 

has not produced valuable contributions, but rather the reliability of the techniques used in 

Intelligent mobility seriously lacks the confidence to operate on their own [201]–[204]. The 

sobering truth is that most commercial applications today were agents that must act and 

perceive the world – for the most part, have no data-driven decision-making involved. 

From the emergence of neural networks more than a decade ago, through to recent 

breakthroughs such as deep-neuroevolution, AI has made giant leaps of recent progress. 

Knowing that the fundamental goal of AI is to produce AGI that interacts with its environment 

to learn optimal behaviours for autonomous decision-making. Despite numerous 

developments in decision-making algorithms, the majority demonstrate in tightly controlled 

settings with well-defined outcomes. If AI is to live up to its science-fictional promises to 

support humanity or even to supersede human intelligence, algorithmic developments should 

be adapted to perform in real-world environments. 
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To address the shortcomings in decision-making algorithms, we focused on perception 

and cognition abilities of machines. Using supervised multimodal ML methods, we address 

higher-level context gathering cognitive skills. The way these networks process data is 

emulated the research performed by Donald Hebb. Not content with focusing solely on 

supervised multimodal ML methods, we examined the lower level perception skills using 

semi-supervised ML and sensor data fusion. These low-level perception skills emulate the way 

humans fuse sensory information to enhance their abilities. To develop algorithms that 

demonstrate low-level perception skills and high-level cognitive ability, we developed two 

datasets using an intelligent mobile robot designed and assembled in house. These 

contributions are reported on in Chapter 3, Chapter 4 and Chapter 5.   



MULTIMODAL MACHINE LEARNING FOR INTELLIGENT MOBILITY 47 

47 

Chapter 3 Architecture for an Intelligent Mobile 

Robot 

3.1 Introduction 

Horse and carriage use dates back to 1900 BC [205]. While this is not entirely an AV 

– the humble horse and cart can be viewed as the first Intelligent vehicle. The horse and cart 

exhibit many of the autonomous qualities reported on in this research. They can adjust speed, 

direction, and detect objects for a variety of scenarios. They are so good at their job and are 

still in use today in many locations around the world. 

In 1912 the Sperry Corporation developed an altitude and gyroscopic based orientation 

indicator to hydraulically operate the flaps and rudders of a plane [206]. Lawrence Sperry 

demonstrated this at an aviation safety contest in Paris in 1914. Some concepts, such as 

artificial horizon are still in use today [207] 

It was not until 1930 that the first marine autopilot system came about in the form of 

a simple wind vane. Originally this crude system consisted of a counterweight that 

compensated for wind direction during gusts. Several iterations of this system evolved before 

a more sophisticated system called Braine Gear came into use [208]. Except for the horse and 

cart, the systems have evolved to become so complicated that they now work on other planets. 

The first autonomous rover to work on another planet was Sojourner on the Mars 

Pathfinder Mission. From touchdown on the 4th July 1997 until Sojourner stopped transmitting 
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on the 27th of September 1997, the pathfinder mission captured over 16,500 images (550 

images from Sojourner) during its extra-terrestrial mission [209], [210]. Sojourner was 

regarded as the pinnacle of rover technology. However, the quantity of data captured during 

its three-month mission is dwarfed by the data captured and the period of operation of 

Opportunity and its sister rover Spirit.  

Opportunity and Spirit were part of NASA's long-term Mars Exploration Program. 

Both Opportunity and Sprit started their mission in the January and February of 2004. They 

finished at different times – Spirit in 2009 and Opportunity 2018 [211]. During its period of 

operation, Opportunity travelled 45.16km captured and transmitted 217,000 images back to 

Earth. Equipped with geological equipment – a Panoramic camera, a Miniature Thermal 

Emission Spectrometer, a Mössbauer Spectrometer, an Alpha Particle X-Ray Spectrometer, 

Magnets, a Microscopic Imager, and a Rock Abrasion Tool – designed to be the mechanical 

equivalent of a geologist unearthing a site [211]. The platform was fitted with a monopod – to 

which the camera was mounted – and a six-degree manipulator that can place the instruments 

in the correct position. Just like the geologist's rock hammer, the Rock Abrasion Tool was used 

to reveal the interior of samples, the robot found [209], [211]. While these sensors are quite 

different from the ones we expect to find on an AV, it is still a robot that performs the task. 

Throughout history, these machines were used for different elements of intelligent 

mobility. The difference between them is that earlier developments reacted to the sensory 

inputs rather than comprehend their surroundings. Comprehending the surrounding of an AV 

is the area where most researcher involved in intelligent mobility are working. They are 

developing algorithms that can understand the context of what they see. To that end, the need 

to collect adequate quantities of data, so that the algorithms can either generalised to new 

surroundings or apply the benefits of multimodal ML becomes abundantly clear.  

This chapter is organized into the following sections. Section 3.2 presents key 

Intelligent mobility developments before moving onto a review of Intelligent mobility datasets 

in Section 3.3. In Section 3.4, we define the problem before reporting on the platform and 

dataset requirements in Section 3.5. In Section 3.6, we discuss the Autonomous Mobile robotic 

platform before reporting on sensor data representation in Section 3.7. Finally, we present the 

results of the datasets developed during this research in Section 3.8, and provide a summary 

of the work in Section 3.9. 
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3.2 Key Intelligent Mobility Developments 

AVs must be equipped with the ability to process dynamic sensor data so they can 

react adequately and seamlessly to the adapting environmental changes based on what they 

see. Although the technologies that facilitate autonomous robots navigate their surroundings 

in well-structured environments are established, doing so in dynamic, unstructured 

environments is a problem yet to be solved. For example, the Google driverless car company, 

Waymo, has been operating AVs without a safety driver and with a license in Phoenix, Arizona, 

since 2017 [212]. While they have reported much success, Waymo is using pre-loaded high 

definition maps with centimetre accuracy to assist the vehicles in making decisions [213]. Of 

course, one could argue that using centimetre accuracy maps to assist in making decisions is 

not precisely a data-driven solution. 

Possibly the most critical events in the design and development of AV were the 2004, 

2005 Defence Advanced Research Projects Agency (DARPA) Grand Challenge and the 2007 

DARPA Urban Challenge. 2004, 2005 DARPA Grand Challenges were conducted in the 

Mojave desert, America. The objective of the challenge was to create a fully autonomous all-

terrain vehicle within a specific time. Unfortunately, in 2004, there were no winners; however, 

in 2005, five vehicles completed the task based on the experience they gained from the 

previous year [214]. 

In the DARPA Urban Challenge vehicles were required to complete a task in urban 

settings. This Urban Challenge saw six teams successfully finished the course. Between the 

two different challenges – the Grand and The Urban – two groups stood out, Stanford 

University and Carnegie Mellon University. Both groups used a range of different sensors – a 

GPS, a Velodyne HDL-64 LiDAR, an Alasca LiDAR, a Radar, and multiple High Definition 

(HD) cameras [214], [215] – to perceive the surrounding information. Of the different sensors 

used, the most relied upon were the LiDAR, camera, and GPS [216], [217]. 

Since the success of these teams, the configuration of Radar, LiDAR, camera, and 

GPS has become commonplace in almost all AVs design. Authors in [218] developed an 

unmanned shuttle system equipped with 2-dimensional (2D) laser scanners, three cameras, an 

odometer, and a GPS locator mounted on a repurposed electric buggy. Composed of four 

modules: a perception module, a navigation module, a Graphical User Interface (GUI), and a 

system monitoring module. The autonomous platform performed different tasks such as 
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obstacle detection, road marking detection, localization, and mapping for behaviour and path 

planning. The platform can generate directional commands to follow a particular path [218]. 

In [219], the researchers used an estate station wagon retrofitted with four LiDAR, a 

millimetre-wavelength Radar, and two GPS units. The Radar and LiDAR were fitted to the 

front of the platform, and a further LiDAR fixed to the centre of the roof. The other two LiDAR 

and GPS units were fixed to the far side and near side of edges of the roof. The LiDAR was 

positioned in such a way to detect lane markings, road surfaces, and the position of almost all 

vehicles in its vicinity. The platform had three modules – a Perception module, a Path planning 

module, and the Controller module – that process information asynchronously. The primary 

focus of the different modules is to detect lane markings, mapping and localization, and object 

detection. 

While the DARPA’s Grand and Urban Challenges zeroed in on standard components 

used by AV’s, research by Oxford Robotics Institute are using Low-carbon Urban Transport 

Zone (LUTZ) pods in unstructured environments to set the standard for the control algorithms 

that drive these systems [220]–[223]. Contrary to the structured environments where research 

groups like Waymo are testing their vehicles, LUTZ pods are being utilized in unstructured 

outdoor environments [224]. Although there is a reason to investigate AV use in both, 

unstructured environments are significantly more demanding as the lack of valuable cue that 

assists the AV to make decisions. This is most prevalent for robots that assist people in 

everyday tasks as their operating environment is not only unstructured but also dynamic. 

In the future personal assistive robots are going to help the elderly to become 

independent [225], assist the blind [226], and support rehabilitation [227] of individuals with 

traumatic injuries. Robots will assist humans in many day-to-day tasks such as personal 

hygiene, mobility guidance [228], dressing support [229], feeding support [230], and 

rehabilitation support [227]. The opportunities for assistive robots are numerous, whether they 

are driving someone to work or collecting samples on Mars. For the most part, HAR is used 

to support assistive robots and AV in driving driver policy. Knowing what human subjects are 

doing is a crucial attribute for robots to plan and execute their duties. HAR forms an integral 

part of Human-Robotic Interaction (HRI) and involves posture analysis, gait analysis [228], 

and skeletal tracking [229] to determine what activities performed. 

FSD is one of the most fundamental challenges for robots that assist humans. FSD 

involves the safe movement of the robot without colliding into obstacles. It assists in 

navigation-based decisions. An Intelligent mobile robot that drives safely on its own, without 
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having accidents is no easy task. Doing the same indoors is even harder. Indoor FSD is more 

complicated due to a cluttered, continually changing environment as the position of furniture 

and walls block line-of-sight. As a result, indoor FSD is enormously challenging, especially 

when training robots to make data-driven decisions [231]. 

Robotic navigation involves the movement of the autonomous platform while 

avoiding obstacles. Except for people, vehicles, and other road users, most obstacles are static 

in outdoor environments. Whereas, obstacles in an indoor environment, keep changing form, 

appearance, position. They are also frequently blocked by walls. For robust robotic navigation 

in indoor environments, the robotic platform must be able to see everywhere so that it can 

detect the relative location of events in another room. Localization is the process by which a 

robot understands its location relative to its surroundings. In outdoor environments, it is 

possible to utilize GPS. However, in indoor environments, the GPS signal attenuates. 

Therefore, it is better to use another method of localization; Radio Frequency (RF) based 

fingerprinting or Simultaneous Localization and Mapping (SLAM). 

RF-based fingerprinting involves storing the RF characteristics of objects at different 

locations in a database. This database can then be compared to the characteristics of the 

unknown targets to find its approximate location. In [232], a Wi-Fi-based fingerprinting 

algorithm was combined with deterministic and probabilistic location estimation for the 

localization of a moving IoT target. A radio signal-based approach for localization is both low 

complexity and cost-effective solution [232]. Fingerprint-based positioning technology 

requires multiple wireless access points (APs) to improve its localization accuracy. To 

overcome the requirement for multiple wireless APs, the authors in [233] proposed an indoor 

localization system that uses a single Wi-Fi AP to locate terminals by utilizing Channel State 

Information (CSI) to compute the direct path length between a single AP and terminals. 

SLAM is an alternative method of localization – some regard it as the optimal. SLAM 

constructs an Occupancy Grid Map (OGMap) and localizes the robot relative to the features 

on the map. Typically, an OGMap is used to describe occupied space in a discrete grid. Depth 

information is gathered from a range finder (LiDAR or ultrasound) to construct a discrete map 

of the environment. Initially introduced in [234], OGMap’s have long been regarded as the 

standard for robotic environment representation. Possibly the most common range finder used 

for SLAM is LiDAR. Researchers in [235] proposed a method for self- parking AV using a 

Random Sample Consensus (RANSAC) algorithm and the Extended Kalman Filter (EKF) to 

evaluate the results. Ibisch et al. [235] showed their proposed method returned an OGMap 
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with an error between 6.4 and 8.3 cm. In [236], researchers presented a method of SLAM using 

OGMap’s to address the issue of frequently changing environments, and demonstrated it with 

data collected over an extended period. For each data point collected, they measured the error 

distribution between different data collection periods. The error distribution used to determine 

the rate of change of the environment was accurate; however, the process is costly on resources. 

3.3 Intelligent Mobility Datasets 

Data sparsity becomes a significant problem where the information used to drive 

autonomous robots is particularly limited. Consider the application of DL techniques to 

Intelligent mobility. If few dominate data access, finding novel approaches to training a Neural 

Network becomes quite a difficult task [237]. Data sparsity is a critical issue because the 

information is at the core of any ML algorithm. The larger and more diverse the dataset, the 

better. When a dataset is inadequate, the performance of the ML algorithm sufferers. In fact, 

data-related issues are the main reason why most ML projects cannot be accomplished [238]. 

3.3.1 Autonomous Vehicle Datasets 

A review of publicly available datasets was undertaken to establish their suitability for 

training an agent for FSD. Table 1 details the datasets we reviewed during this research. None 

of these datasets were suitable for unstructured indoor and outdoor environments and in some 

cases, lacked the modality required to pursue the research objectives detailed in chapter 1. The 

algorithms that drive this technology are dependent on real-world data for development, 

testing, and validation. The CamVid Database was one of the first experimentally collected 

datasets with class labels for visual object analysis, testing, and validation [239]. Captured 

from the perspective of a driver, the images in the dataset address the need for experimental 

data to evaluate emerging algorithms quantitatively. 

The work in [240] presents one of the most comprehensive datasets collected to date 

with a Multimodal sensor ensemble attached to an autonomous ground vehicle platform. In 

addition to optical and depth data capture, the platform was fitted with Inertia Measurement 

Units (IMU) for position and orientation. The data captured formed a base for SLAM of the 

respective vehicle. As with [240], the combination of the sensors was ideal for navigation, 

localization, or mapping. Currently, not that many multimodal autonomous driving datasets 

have been released into the public domain – some notable ones include [191], [240]–[242]. As 

of late, the Cityscapes dataset in [243] & [244] have proven to be amongst the most popular. 
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Typically, these AV datasets focus on the development of; stereo reconstruction as in [245], 

pedestrian and vehicle detection as in [244]–[246], semantic classification as in [239] and 

motion estimation as in [247] & [248]. 

TABLE 1: REVIEWED AV DATASETS  

Name Ref 
Permission 

Environment
Year Description 

AEV 
Autonomous 

Driving 
Dataset 

[249] 
Licence 

Structured 
2019 

2.3 TB of camera, LiDAR sensor data, featuring 
Forty thousand frames with 2D semantic segmentation, 12000 frames with 3D 

bounding boxes, and unlabelled 3D Point Clouds. Also, 390000 frames of 
unlabelled sensor data. 

Oxford Radar 
RobotCar 
Dataset 

[250] 
Opensource 
Structured  

2019 

The Oxford Radar RobotCar Dataset is a radar release to append the Oxford 
RobotCar Dataset from 2016. Sensors included a Navtech CTS350-X Millimetre-

Wave Frequency Modulated Continuous Wave (FMCW) radar, dual Velodyne 
HDL-32E LiDAR with optimized ground truth radar odometry. Data was 

collected around Oxford over 280km.  

Brno Urban 
Dataset 

[251] 
Licence  

Structured 
2019 

The Bruno urban dataset is a dataset recorded in the Czech Republic over 350km 
using four cameras, two LiDAR’s, inertial measurement unit, IR camera, and a 

differential Global Navigation Satellite System (GNSS) receiver with centimetre 
accuracy. All data were timestamped with sub-millisecond precision.  

A*3D [252] 
Opensource 
Structured 

2019 

A*3D dataset is a dataset recorded at different times of the day and night in 
sunny, cloudy, and rainy weather conditions. 230000 human ladled 3D object 

annotations in 39,179 LiDAR Point Cloud frames with corresponding front-facing 
RGB images. 

Waymo Open 
Dataset 

[253] 
Opensource 
Structured 

2019 

The Waymo open dataset is a dataset recorded in the USA using a LiDAR and 
camera sensors. The dataset contains LiDAR and camera data from 1,000 

segments collected at 10Hz in diverse scenarios and environmental conditions. 
The dataset shows four object classes – Vehicles, Pedestrians, Cyclists, Signs, 
12M 3D bounding box labels with tracking IDs on LiDAR data, and 1.2M 2D 

bounding box labels with tracking IDs on camera data. 

Lyft Level 5 [254] 
Licence 

Structured 
2019 

Lyft level 5 dataset is a large-scale dataset recorded by a fleet of multiple, high-
end, AV, containing over 55000 humans ladled 3D annotated frames. Data was 

captured using seven cameras and up to 3 LiDAR. A semantic map provides 4000 
lane segments (2000 road segment lanes and about 2000 junction lanes), 197 

pedestrian crosswalks, 60 stop signs, 54 parking zones, eight-speed bumps, and 
11-speed humps. 

Argoverse [255] 
Opensource 
Structured 

2019 

Argoverse dataset is a dataset recorded in Pittsburgh and Miami using LiDAR and 
camera sensors. Split into three releases; the first contains data from 113 scenes 
with 3D tracking annotations on all objects. The second release is a dataset of 

300,000-plus scenarios. The third release is a set of HD maps of several 
neighbourhoods.  

Berkeley 
Deep Drive 

[256] 
Opensource 
Structured 

2018 

Berkeley Deep Drive dataset is a dataset recorded in the USA using camera and 
GPS sensors. The dataset contains 100000 HD video – each running 40 seconds 

long at 30 fps – sequences over 1100-hour of driving across many different times 
of day, weather conditions, and driving scenarios. 

ApolloScape [257] 
Opensource 
Structured 

2019 

ApolloScape dataset is a dataset recorded in China using camera and LiDAR 
sensors with pixel-by-pixel annotations, including 26 different recognizable 

objects – cars, bicycles, pedestrians, and buildings. The dataset offers numerous 
levels of complexity recorded in challenging environments, weather, and extreme 

lighting conditions. 

nuScense [258] 
Licence 

Structured 
2019 

The nuScense dataset is a dataset recorded using LiDAR, Radar, camera, and 
GPS. nuScense consists of 1000 scenes containing 1.4 million camera images, 

390000 LiDAR sweeps, 1.4 million Radar sweeps. Containing 23 different classes 
or 1.4 million objects annotated by hand and showed, nuScense was collected in 

Boston and Singapore. 

Oxford 
RobotCar 
Dataset 

[259] 
Opensource 
Structured 

2016 

The Oxford RobotCar Dataset is a dataset recorded in oxford covering a fixed 
path, using LiDAR, camera and GPS sensor. Data was captured over one year, 
covering a variety of Weather and traffic conditions showing road users, along 

with longer-term changes to the environment. 

KITTI [190] 
Opensource 
Structured 

2013 

The KITTI dataset is a dataset recorded in Germany using LiDAR, camera, 
Radar, and GPS sensors. The KITTI dataset is regarded as a benchmark dataset 

upon which a lot of the proceeding datasets were based on. The dataset contains 6 
hours of diverse traffic scenarios recorded at 10-100 Hz covering autobahn, rural 

roads, and inner-city scenes.  
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One of the most recent developments in AV datasets is the nuScense dataset. Released 

in March 2019, nuScense consists of 1000 scenes containing 1.4 million camera images, 

390000 LiDAR sweeps, 1.4 million Radar sweeps. It contains 23 different classes or 1.4 

million objects annotated by hand. nuScense was developed using data captured Boston and 

Singapore. Primarily focusing on object detection, tracking, and segmentation of agents in 

outdoor environments, nuScense covers both right- and left-handed driving scenarios [258]. 

The majority of these autonomous driving datasets are primarily addressing the 

challenges of (a) scene understanding, (b) localisation/mapping, and (c) object detection. 

Mostly they rely on sensors such as LiDAR, Radar, and camera. However, some datasets – 

such as the BerkleyDeepDrive dataset – primarily focus on camera GPS and IMU data. While 

some elements of these datasets are useful, the lack of modality is a major shortcoming when 

pursuing Multimodal ML methods such as online active Learning. Furthermore, the fact that 

some datasets rely so heavily on GPS means they cannot be applied to indoor environments. 

While some of the other datasets reviewed provide IMU data such as speed and 

direction of travel, the majority do not. Usually, the gathered data is optimized to detect objects 

and people in traffic – unfortunately, a lot of these datasets are designed for a single aspect of 

AV research. Consequently, most research projects do not tackle the many difficulties 

experienced during extended periods of autonomy: chiefly, localization under various 

environmental conditions as in [247], [248], mapping over time to see how scenes change as 

in [260], [261], and diverse object recognition using fused sensor data as in [262]. 

A benchmark dataset should cover many real-world scenarios both indoors and out, 

over an extended period, focus on all elements of the research – object detection, FSD, HAR 

– and annotation of the objects identified in the sensor data. Primarily a dataset should account 

for the three different pillars of which an AV is composed, and ill-disciplined road users such 

as pedestrians. 

3.3.2 Human Activity Recognition Datasets 

While there are many approaches to getting the AV’s moving, few have researched 

the interaction with their surroundings. Works that are more closely related to Multimodal ML 

for HAR with applications to AV strive to decrease road accidents by recognizing pedestrian 

activities. Researchers in [263] and [264] provide an interesting application of HAR for a 

pedestrian recognition system that matches the predicted intention with that of a driver's 

direction. Action prediction is 'before the fact event' and supersedes recognition. Referred to 
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as the Human Action Prediction (HAP), where ML algorithms recognize a class from an 

incomplete or changing action [265]–[267]. pQuite different from activity recognition, where 

ML algorithms expect to see the entire set of action dynamics. 

 A review of publicly available datasets was undertaken to establish their suitability 

for training a Multimodal ML agent for HAR. Table 2 provides an overview of the reviewed 

datasets found during this research. Broadly speaking datasets can be classified into four 

different categories: (a) RGB stereographic image, (b) RGB-Depth image, (c) Biometric 

information recorded by wearable sensors (e.g., accelerometers) and (d) Multimodal data 

captured using LiDAR, RGB, RGB-Depth. 

Except for the LboroLdn HAR dataset [279], all the HAR Datasets reviewed during 

this research either lacked multimodality or the use of LiDAR. Considering this and the 

limitations of reviewed HAR datasets, we broadened our field and reviewed Multimodal AV 

Datasets. In the context of Multimodal AV Datasets, the work in [240], [279] presents a 

TABLE 2: REVIEWED HAR DATASETS  

Name Ref 
Permission 

Environment 
Year Description 

OA Dataset [268] 
Opensource 

Office 
2015 

The OA dataset covers the regular daily activities taken place in an 
office, and it is the largest activity dataset of RGB-D videos, which 

includes 20 classes performed by 10 subjects. 

UTD-MHAD 
Dataset 

[269] 
Opensource 

Studio  
2015 

The UTD-MHAD dataset consists of four temporally synchronized data 
modalities. The modalities include RGB videos, depth videos, skeleton 

positions, and inertial signals from a Kinect camera and a wearable 
inertial sensor logging 27 classes performed by 8 subjects. 

UWA3D 
Dataset 

[270] 
Opensource 

Studio 
2016 

The UWA3D dataset is a multiview activity dataset which contains 30 
actions performed by 10 subjects. 

NTU RGB+ 
D 

[271] 
Opensource 

Office 
2016 

The NTU RGB+D dataset consists of 56 thousand video samples and 4 
million frames, collected from 40 distinct subjects.  The NTU RGB+D 
dataset contains 60 different action classes from typical daily, mutual, 

and health-related actions. 
Wearable 
Computer 

Vision 
Systems 
dataset 

[272] 
Opensource  
Unstructured 

2014 

The wearable computer vision system dataset that includes trajectories 
of different users across two indoor environments performing a set of 
more than 20 different activities captured using wearable RGB and 

RGB-D sensors 

Ajou 
University 

HAR dataset 
[273] 

Proprietary  
Office 

2013 

The Ajou University HAR dataset was acquired using a 3-axis 
accelerometer and a single camera worn on a body of subjects 

preforming 8 activities. Quantity of data and subjects performing 
activities were not reported. 

MIT Media 
Lab HAR 

dataset  
[274] 

Proprietary  
Unstructured 

2015 
The MIT Media Lab HAR dataset was acquired using the 

accelerometer, camera, gyroscope in google glasses to interpolate pulse 
and respiratory rate of 12 human subjects performing 6 activities. 

MVPA 
dataset 

[275] 
Proprietary  

Unstructured 
2013 

The MVPA dataset was acquired using a hip-mounted accelerometer 
and a wearable camera. 49 Subjects engaged in 12 activities recorded 

over 3 days.  
MultiTHUM

OS 
[276] 

Proprietary  
Unstructured 

2017 
The MultiTHUMOS dataset was acquired using stereo video camera of 

an unknown number of subjects performing 65 different activities.  

The Breakfast 
dataset 

[277] 
Opensource  
Unstructured 

2014 
The breakfast dataset includes a total of 52 participants, each 

performing a total of 10 cooking activities in multiple real-life kitchens, 
resulting in over 77 hours of video footage using stereo camera 

The Okutama 
Action 
dataset 

[278] 
Opensource  
Unstructured 

2017 
The Okutama-Action dataset was captured using stereo camera from an 

aerial view. It consists of 43 minute-long fully annotated sequences 
with 12 action classes.  

LboroLdn 
HAR dataset 

[279] 
Opensource  

Office 
2019 

The LboroLdn HAR dataset was captured using RGB-D, LiDAR, 360° 
camera sensors. 9 subjects performing 16 activities.   
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comprehensive Multimodal dataset collected using LiDAR and a range of cameras tagged to 

an AV. Datasets in [240], [242], [280], and [190] fit the criteria of Multimodality with focus 

on camera and LiDAR sensor data. Although the combination of the sensors was found to be 

ideal for navigation, localization, or mapping, the environment under which the data was 

captured limited its applications to an AV and rendered it difficult to use in HAR. 

This research found that for HAR, AV datasets fit the Multimodal criteria but are 

restricted by the environment. Furthermore, when compared to the HAR datasets, AV datasets 

provide a lower density of information about pedestrian actions. This decreases the accuracy 

of human silhouette detection, which results in misclassification. Moreover, all the AV 

datasets reviewed were collected with vehicles in outdoor environments. During this research, 

we did not find a comprehensive dataset that covers both indoor and outdoor environments 

and fits the criteria of multimodality with camera and LiDAR sensor data streams. While some 

datasets utilised wearable sensors, such as the ones embedded in watches or phones, it was felt 

that using sensors ubiquitous to AVs would be most relevant. 

3.4 Problem Definition 

The autonomy of transport in real-life settings is a significant challenge that needs to 

be overcome [281]. Autonomous platforms used in transport, for the most part, utilize similar 

sensors – LiDAR, Radar, ultrasound, camera, and GPS [214], [215] [216], [217]. Typically, 

LiDAR is used to map the surrounding environment in 3-Dimensions (3D), identify free space, 

and measure distances in midfield ranges [116]. Radar is used for long-range sensing, while 

ultrasound sensors are useful at very short ranges. Imaging sensors are used to detect road 

surfaces, street furniture surrounding pedestrians, and vehicles [176]. 

Moreover, since these systems need to function seamlessly in both indoor and outdoor 

environments, complex social interactions are going to compound the problems further. AV 

and assisted living robots are a rapidly evolving element of Intelligent mobility. It was not so 

long ago that such technologies were considered science fiction. In such lively times, it is easy 

to jump the gun and fall favour to misconceptions about the technology, the potential, and the 

process used to develop these systems. 

In the following sections of this Chapter, I propose an open-source experimental 

framework for data gathering, sharing, and experimental validation of driverless vehicle 

technology. The objective of the proposed platform is to demonstrate a solution to some of the 

core challenges discussed above, develop an open-source experimental framework for data 
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gathering, sharing, and experimental validation of driverless vehicle technology. I aim to 

enable researchers all over the world to utilize different test data, and to provide a unified 

interface to execute control algorithms on a prototype. Towards this end, I have developed a 

driverless platform equipped with several sensors and real-time control through a high-

performance computer to derive data-driven driver policy. 

3.5 Technical Parameters of an Autonomous Platform 

A scalable, multi-layer context mapping and recognition system are depicted in Figure 

19. The architecture has four layers: The Sensing Layer, the Data Analysis Layer, a Multi-

layered Context Representation, and the Application Layer. The Sensing Layer is primarily 

concerned with gathering and presenting different types of information to the data analysis 

layer. The Data Analysis Layer consists of data pre-processing, data fusion, object detection, 

FSD, and HAR. Classifications made in the Data Analysis Layer are passed onto the Context 

Representation layer to be called by the different applications as needed. Finally, the 

Application Layer communicates with the Context Representation Layer to acquire location-

dependent context information. 

 
Figure 19: Shows the scalable, multi-layer context mapping and recognition system for the autonomous platform. They are 
depicting the sensing layer, a multi-layered context representation, the data analysis layer, and the application layer. 
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To cater for the requirement of scalability, the Context Representation Layer organizes 

the context information, such as a subject carrying a box, into different categories according 

to its complexity, location, resolution, and steadiness. A requirement for scalability is that 

different applications require different levels of context information. Furthermore, scalability 

can be realized as temporal and spatial resolution based on the uncertainty of observations. 

The purpose of the autonomous platform is to navigate at low speeds in unstructured 

environments, both indoor and outdoor. The autonomous platform moved at low speeds to 

adhere to the licence requirements and prevent an accident at speed from occurring. The 

autonomous platform has been developed as an AV for the collection of specific Multimodal 

data to facilitate the development of context-based algorithms such as FSD and HAR. The 

autonomous platform can roam without the need for human intervention. However, should it 

be required, an operator can take control. 

3.5.1 Platform & Dataset Requirements 

The inherent complexities of the built environment prevent AV from being hard 

programmed with a fixed set of rules that foresee all possible scenarios they might encounter 

[282]. Therefore, mobile robots need to learn to make decisions autonomously based on the 

events they encounter and the objects they perceive. Only in this manner can an adequate 

policy be derived – self-evolving over time depending on objects the agent's encounter. 

Unfortunately, each type of sensor has its limitations. For example, LiDAR sensor 

readings are often affected by the weather, such as rain, fog, or snow [283]. Furthermore, the 

resolution of a typical LiDAR sensor is quite limited when compared to a camera. For example, 

at 300 RPM, the azimuth resolution of the VLP-16 LiDAR is 1°. By comparison, a typical 

high definition camera has a resolution of 1920 x 1080 pixel and is therefore much more 

densely packed on the horizontal axis. Similarly, stereo camera-based depth estimation is 

limited by its baseline distance [284]. For example, a shorter baseline would allow only a 

short-range depth estimation of objects. While a more extended baseline would increase the 

range of the system to measure more considerable distances, it is not always possible when 

considering the physical setup on a specific platform [285]. Therefore, given that each sensor 

has its limitations [283], the diversity offered by multimodality can only offer a positive 

contribution to the ability of any machine to perceive [286]. 

To realize a self-evolving AV, one sensor modality cannot capture all the context. 

Therefore, multiple sensors connected to a central processing system must be a prerequisite of 

any dataset. Secondly, the data captured by different sensors would be of little use if they are 
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not analysed to capture various parameters of context, such as FSD and HAR. Therefore, 

advanced Multimodal ML algorithms are necessary to make sense of the fused sensor data 

streams. 

The most common sensors amongst all the prototypes that can be used in both indoor 

and outdoor environments are LiDAR and the camera. Both camera and LiDAR are used to 

map the surrounding environment, identify free space, and measure distances in the near and 

midfield ranges [116]. Radar is used for long-range sensing, while ultrasound sensors are 

reliable at very short ranges. Imaging sensors are used to detect road surfaces, street furniture 

surrounding pedestrians, and vehicles [176]. 

Restrictions concerning available datasets, and datasets that are suitable for our 

multimodal ML methods, are severely lacking. Coupled with this and the necessity to adhere 

to the three pillars described  in section 2.5, we can define the platform requirements as 

1. A small safe AV that operates in pedestrianized areas that can collect 

realistic Multimodal data from a set of sensors frequently utilized in an 

AV for both indoor and outdoor environments. 

2. An ability to collect data from realistic test scenarios that are 

representative of changing environments that a vehicle operates in. One 

of the primary challenges faced by autonomous agents is safe operation 

in a changing environment. The autonomous platform needs to be able 

to collect data to address the issue of dynamically changing scenarios. 

3. An application interface displaying telemetry data about the 

autonomous platform so that different parties can replicate the test 

scenarios and benchmark the performance of novel ML algorithms. 

This element will facilitate the dissemination of collected datasets and 

ML algorithms amongst the research community.  

In terms of data variety, we can add an additional prerequisite to help us further 

identify requirements: 

4. A wide variety of traversable surfaces, objects and activities being 

performed by people. Data should be collected in both indoor and 

outdoor environments accounting for weather conditions that influence 

the sensor data gathered by AV. The traversable surfaces, objects, 
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activities, and influencing factors should be recorded using multiple 

sensor types over an extended period.  

It should be noted that while the second and fourth requirements are quite similar, they 

were defined to address separate elements of the data collection process. The second 

requirement was defined to address elements relating to the autonomous platform, whereas the 

fourth requirement was defined to address elements relating to the dataset we collected. The 

system architecture and datasets discussed in the following section were developed to address 

these requirements. 

3.6 An Autonomous Mobile Robotic Platform 

The proposed framework of the autonomous platform was composed of stackable 

layers: The Sensing Layer, The Data Analysis Layer, a Multi-layered Context Representation, 

and The Application Layer. Since the Data Analysis Layer and the Multi-layered Context 

Representation focuses on the data-driven algorithm development, they are reported on in 

chapters 4 and 5. The autonomous platform was developed in mind of the four requirements 

listed above. 

The mobile robot platform utilizes seven different sensors. These sensors – part of the 

Sensing Layer – include cameras, RGB-D, ultrasound sensors, LiDAR, and Radar. The 

location-dependent context, processed on the Multi-layered Context & Data Analysis layer, 

provides information about the location of human subjects, human activities, free space, and 

obstacles. The sensor data, gathered by the Sensing Layer, is utilized by the robot and provides 

the system with information to make navigation decisions, on the Application Layer. 

The platform chassis is a repurposed Rebo LT100E Electric Quad Bike. The LT100E 

Quad Bike features an adjustable three-speed 1 kW 36-volt brushless motor. The Quad Bike 

is powered by a rechargeable battery and can reach a top speed of 22 km/h. The height, length, 

and width of the platform are 0.992 meters, 1.02 meters, and 0.64 meters, respectively. The 

front overhang was 0.15 meters, wheelbase 0.71 meters, and the rear overhang 0.16 meters. 

The front and rear track width are approximate 0.5 meters, and the platform has a turning circle 

of 3.5 meters. Figure 20 shows the Loughborough University London Autonomous Platform 

indicating the location of the proximity and optical sensors.  

Figure 21 shows the system framework for the proposed platform. Currently, the 

sensor data is logged on a Secure Digital (SD) card and a Micro-Star International (MSI) 
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Apache Pro, running windows 10 with an Intel Core i7, 16Gb Ram, a Nvidia GeForce graphics 

card, and a 1 TB solid-state hard drive. 

 
Figure 20: Loughborough University London autonomous platform indicating the location of the range and optical sensors used 
to collect the LboroLdn AV and LboroLdnHAR datasets. The Kinect sensor, missing from this image, is positioned on the 
handlebar. 

A cable connects the right and left front callipers to the right brake lever. When 

depressed, the callipers mounted over the disk close, thus stopping both the right and left front 

wheels from rotating. The rear brake, mounted under the right rear fairing, is controlled by a 

lever mounted on the left-hand side of the handlebar. Callipers connected to the rear 

suspension arm, mounted over the disc, are connected to the rear axle. When depressed, this 

stops the bike. As with the front brakes, a switch mounted in the leaver housing cuts power to 

the motor adding a load to the rear axle before retarding the bike to a stationary position. 

There is a three-speed lockable governor positioned below the left rear fairing, and a 

throttle mounted on the right-hand side of the handlebar. A chain drive turns a sprocket fixed 

to the rear axle and propels the bike at speed, depending on the position of the throttle. A 

switch mounted immediately to the left of the throttle determines the bike’s direction of travel 

– forward/reverse. Switching direction while the bike is moving means power is cut from the 

motor. When this occurs, the motor acts as a load on the rear axle retarding the bike to a 



MULTIMODAL MACHINE LEARNING FOR INTELLIGENT MOBILITY 62 

62 

stationary position. Once the throttle moves position, power returns to the motor, and the bike 

moves in the opposite direction. 

Figure 21: Proposed framework for the platform showing the controllers, actuators, depth, optical, and telemeter sensors. All-
optical and proximity data was logged to the laptop. Telemetry data was timestamped and logged to an SD card. 

3.6.1 The Sensing Layer 

Ultrasound data is collected on a single plane (2D) with a Horizontal Field of View 

(HFoV) of 90° with a max range of 5 meters. The ultrasonic array supports multiple channel 

data streams and takes a total of 6 measurements per second utilizing six emitter/detector pairs 

and a spatial resolution of 20°. A monopod fixed to the Platform chassis at the centreline 

suspends the 360Fly Monocular camera, VLP-16 LiDAR, and the Ricoh Theta V 360° camera.  

The VLP-16 is composed of 16 emitter detector pairs taking a total of 300,000 

measurements per second. At a scanning rate of 5 Hz, the spatial resolution is 0.1°, captured 

over 360° on the horizontal axis. On the vertical, the spatial resolution is 2° captured over 30°. 

Conversely, the Delphi electronic scanning radar (ESR) has a max range of 175 meters, a 10° 

Vertical Field of View (VFoV), a 20° HFoV, and a spatial resolution or 0.5° 

The 360Fly camera has a wide-angle fisheye lens with a Field of View (FoV) of 240°, 

and the Theta V 360° camera has two fisheye lenses, front and rear-facing, with a total field 

of view of 360°. Except for the two Wansview Internet Protocol (IP) cameras, the image data 

captured on the 360Fly and the Theta V 360° cameras, was done so using a wide-angle lens, 

with a spatial resolution of 1920×1080 and 3840 x 1920, respectively. Cameras with a wide-

angle lens were chosen to increase the depth of field, thus increasing the chances of getting the 
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entire scene into the frame. Because the autonomous platform was designed to operate both 

indoors and outdoors, space manipulation was crucial to gathering valuable context 

information. Therefore, using a camera with a standard prime, zoom, macro, or telephoto lens, 

would fail to capture context over a wide range – and were therefore not used.  

Furthermore, to assure that data was gathered in areas deemed vital (i.e. towards the 

front of the platform), context gathering cameras were positioned to overlap their field of view. 

Contrary to this, the Wansview IP cameras had a standard prime lens. However, since these 

cameras are primarily concerned with gathering data over which the autonomous platform has 

previously travelled, they do not need the wide-angled context information, as they are 

concerned with traversable surfaces. 

TABLE 3: PROXIMITY SENSORS SUMMARY 

Sensor Dimension Range HFoV VFoV 
Spatial 

Resolution 

Scanning 

Rate 

Ultrasonic Array 2D 0-5m 90° 30° 20° 6Hz 

VLP-16 LiDAR 3D 3.5-100m 360° 30° 0.1° 5Hz 

Delphi ESR 2D 0-175m 20° 10° 0.5° 5Hz 

 
TABLE 4: OPTICAL SENSORS SUMMARY 

Sensor Resolution FPS FoV Lens Baseline 

360Fly Wide-angled camera 1504x1504 29.9 240° 30cm  

Ricoh Theta V 360° camera 1920x1080 29.9 360° 10cm 

Wansview IP camera (x 2) 480×360 29.9 95° 4cm 

 
TABLE 5: TELEMETRY SENSORS SUMMARY 

Sensor Operation Voltage Operational Current 

Revolutions Per Minute (RPM) Optical Coupling Sensor 3.5-5V 15mA 

HMC5883L 3 Axis Magnetometer Sensor 3.5-5V 15mA 

STM32 Voltage Sensor 3.5-5V 15mA 

Except for the two Wansview IP cameras, all perception sensors were mounted along 

the centreline of the platform. Speed, power, and orientation are determined using an Infra-

Red (IR) break-beam rotary encoder, a voltage divider, and a 3 Axis Magnetometer, 

respectively. A break-beam sensor identified when a beam between the receiver and the 

emitter was broken. For example, when the disk brake on the rear axle passes in between the 

emitter and the transmitter, an impulse is counted. Knowing the number of gaps in the encoder 

disk and the time it takes to complete one full rotation, the platform speed can be determined.  

The direction of travel is determined using the 3 Axis Magnetometer. The RPM sensor, 

3 Axis Magnetometer, and Voltage divider are fixed inside the chassis structure. 
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Table 3 summaries the proximity perception sensors indicating the Dimensions, Range 

Scanning Rate, HFoV, VFoV. Table 4 summaries the optical sensors indicating the Resolution, 

Lens baseline, Frames Per Sec (FPS), and the FoV. Table 5 summaries the telemetry sensors, 

indicating the Operational Voltage and Current. 

3.6.2 The Application Layer 

Inherent complexities and the unpredictability of road users make programming the 

response of an AV a problematic, if not impossible task. Consequently, the AV needs to be 

able to make decisions autonomously, depending on the situation at hand. To arrive at this 

point, ML algorithms require diverse and sufficient quantities of training data to make a 

classification in varying environments. The importance of developing a dataset and then 

benchmarking it against Perception, Localization, and Driver Policy is abundantly necessary. 

Open source and publicly evaluated datasets would allow researchers to compare 

algorithms objectively. This combination of obstacles is essential to benchmark systems for 

full 24/7 operation in all environments. Therefore, setting a well-defined challenge in 

conjunction with realistic well-balanced sensor data would be a valuable contribution to this 

field of research. 

Towards the centre front of the test platform lies the steering assembly. The steering 

assembly ties the handlebars to the right and the left tie rod. The tie rods direct the platform 

using two servo motors. The right and left tie rod act as a lever pushing and pulling the right 

and left swing arm joint, thereby directing the wheels. Figure 22 shows an isometric view of 

the steering assembly. 

An Arduino Uno controls two servo motors and receives commands through the 

Arduino Yun. The commands come in the form of Pulse Width Modulation (PWM) signals. 

Before being processed by the Uno, the signal passes through a low pass filter. The low pass 

filter smooths the discreet waveform into an analogue equivalent that represents the linear 

position of the Digital to Analog Conversion (DAC) dial on the user interface.  

The Wi-Fi chipset on the Yun and the functions contained in the Bridge library allows 

the Yun’s microprocessor to behave as a Linux server hosting a website. A web-enabled device 

displaying the user interface connects the quad bike to the gateway in a star configuration. 
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Figure 22: Steering assembly showing both servos motors the right and left tie rods linking to the handlebars. The link to the 
handlebars is through an additional two tie rods. Both servo motors are driven from the same signal – PWM – from the Arduino.

  

 
Figure 23: Shows the ultrasonic sensor array assembly, detailing the six HC-SR04 ultrasonic sensors and a section of the 
autonomous platform headset. The HC-SR04 were at an angel of 5°, 25°, and 45° either side of the longitudinal axis. 



MULTIMODAL MACHINE LEARNING FOR INTELLIGENT MOBILITY 66 

66 

The autonomous platform can roam freely. It collects data autonomously with the 

possibility for human intervention should it be required. While human intervention is not 

desired, it was a prerequisite of the license and permit needed to perform the experiments. 

Furthermore, during the design stage of the autonomous platform, there was some discussion 

about the possibility of implementing reinforcement learning. While reinforcement learning is 

beyond the scope of this research, it is regarded by some as an essential contribution to 

Intelligent mobility. For this reason, the operator-based control was given the same priority as 

the camera and ultrasound-based control.  

The current policy that drives the platform is rudimentary at best. Decisions are hard 

programmed based on proximity of objects relative to the ultrasonic sensor array, the colour 

that the 360° camera perceives, and the operator governing the movement of the platform. 

Figure 23 depicts the ultrasonic sensor array of six HC-SR04 ultrasonic sensors. The primary 

objective of the autonomous platform is to avoid colliding with obstacles. When the platform 

is overwhelmed, it does nothing until its path is cleared, all proximity and optical sensors 

indicate “Full Stop.” 

 
Figure 24: Ultrasound collision avoidance dictates navigation and driver policy for the autonomous platform for data collection. 
Decisions are hard programmed based on the proximity of objects relative to the ultrasonic sensor array. 

A. Ultrasound-Based Control 

A collision avoidance policy is implemented depending on the proximity of objects 

relative to the platform. Figure 24 shows the conditions and the reaction that the platform 

makes depending on the proximity of the obstacle. The ultrasonic sensor array consists of 6 

HC-SR04 sensors positioned at 5°, 25°, and 45° either side of the longitudinal axis. Figure 25 

depicts the ultrasound-based control architecture showing an insert of the collision avoidance 
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policy. Objects within the range are logged and acted upon, influencing the driver policy of 

the platform. 

Upon initialization, the ultrasonic sensor array establishes a connection with the 

Arduino Yun. A timestamp and distance measurement from each HC-SR04 sensor is logged 

to an SD card. Depending on the range and the conditions in the collision avoidance policy, 

the response of the platform is determined – depicted in Figure 23. When two or more obstacles 

are detected in the path of the platform, the quad bike pauses until the path clears. This element 

of the control system can govern all elements of the platform – speed, gears (Forward/Reverse), 

brakes, lights, horn, and the direction it travels in. 

B. Camera-Based Control 

The second element governing driver policy is colour recognition. When the platform 

encounters the colour red, the quad bike stops and waits for further commands from the 

operator or until the colour changes to green. Upon initialization, the laptop establishes a 

connection with the Arduino Yun, loads a frame, and determines the Hue Saturation and 

Variance (HSV) value of the first-pixel patch – with dimensions 8 × 8. Repeated for each pixel 

patch until a new image is loaded, all the pixels patches are checked for the corresponding 

colour. This element of the control system can govern the AV brakes and speed. Figure 26 

shows the camera-based control architecture indicating the communication channels between 

the laptop and the Yun. 

C. Operator-Based Control 

An operator always accompanies the platform to oversee the safety of operation, 

override the collision avoidance policy and colour recognition governance. An in-house 

designed web app relays telemetry information and provides a control platform to the user. 

When the web page opens, a connection between the user and platform is established. The 

interface page can be accessed from any location with an internet connection. The current state 

of the platform is updated on the interface page, indicating the speed, direction, and logical 

state of the brakes, lights, horn, and gear (forward/reverse). As with the ultrasonic based 

control, this element of the control system can govern all elements of the platform. Figure 27 

depicts the operator-based control architecture indicating the input from the operator and an 

insert showing the user interface. As a safety feature and the futureproof for reinforcement 

learning, the operator-based control algorithm can override the ultrasound and camera-based 

control algorithms. 
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Figure 25: The ultrasound-based control architecture for collision avoidance. Objects within the range are logged and acted upon, 
influencing the driver policy of the platform. 
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Figure 26: The camera-based control architecture for colour detection. Currently, the platform understands the colour of red green 
and amber. 
 



MULTIMODAL MACHINE LEARNING FOR INTELLIGENT MOBILITY 70 

70 

 

 

F
ig

ur
e 

27
: T

he
 o

pe
ra

to
r-

ba
se

d 
co

nt
ro

l a
rc

hi
te

ct
ur

e 
fo

r m
an

ua
l o

ve
rr

id
e.

 T
he

 u
se

r i
s 

th
e 

on
ly

 e
le

m
en

t o
f d

ri
ve

r p
ol

ic
y 

th
at

 e
xe

rt
s 

co
nt

ro
l o

ve
r t

he
 c

ol
li

si
on

 a
vo

id
an

ce
 p

ol
ic

y 
– 

in
 th

e 
ul

tr
as

ou
nd

s-
ba

se
d 

co
nt

ro
ll

er
 –

 a
nd

 th
e 

co
lo

ur
 g

ov
er

na
nc

e 
in

 th
e 

ca
m

er
a-

ba
se

d 
co

nt
ro

ll
er

. 

 

A
rd

u
in

o
 Y

u
n

 

C
o

n
tr

o
l 

S
ys

te
m

 F
u

si
o

n

Le
ft

 B
ra

k
e

Li
gh

ts
H

o
rn

R
ig

h
t 

B
ra

ke
G

e
a

r
St

e
e

ri
n

g
Sp

e
e

d

In
it

ia
liz

at
io

n

E
st

a
b

lis
h

 

C
o

n
n

e
ct

io
n

 

W
it

h
 Y

u
n

G
e

t

C
o

n
tr

o
l &

T
e

le
m

e
te

ry
 

D
at

a

U
p

d
at

e
 R

em
o

te
 

C
o

n
tr

o
l 

In
te

rf
a

ce

W
ri

te
 

T
o

 Y
u

n



MULTIMODAL MACHINE LEARNING FOR INTELLIGENT MOBILITY 71 

71 

3.6.3 Experimental Setup 

The sensors discussed in this thesis are commonly used in the research for assisted or 

autonomous driving [191], [240]. To ensure reproducibility of our work, Figure 28 provides 

the metric dimensions of sensor positions relative to the front axle of the testbed. The location 

of each sensor is measured relative to the ground and the front axle of the platform. Except for 

the Wansview cameras, all sensors were positioned along the centreline of the platform. 

 
Figure 28: Platform setup indicating the location of the sensors relative to the front axle. The location of each sensor is measured 
relative to the ground and the front axle of the platform. Except for the Wansview cameras, all sensors were on the centreline. 

The location of the Wansview cameras was 76 cm behind the front axle and 38 cm 

above the ground. Both Wansview cameras were offset from the centreline by 15 cm. The 360° 

Ricoh V and LiDAR were positioned 40 cm behind the front axle, 120 cm and 95 cm above 

the ground, respectively. The 360Fly Wide-Angled camera was positioned 35 cm behind the 

front axle and 90 cm above the ground. The ultrasonic sensor array was positioned 15 cm 

ahead of the front axle and 32 cm above the ground. Moreover, the Delphi ESR was positioned 

23 cm forwards of the front axle and 22 cm above the ground. 

To evaluate the applicability of ML algorithms for specific purposes, it is critical to 

guarantee an experimental setup that allows optimal parameter input for subsequent tests [287]. 

In other words, we need to provide conditions where each sensor reaches its optimal 

performance by reducing the impact of sensor-specific limitations. This premise led to the 

experimental setup FoV shown in Figure 29. 

The insufficient detection area towards the rear of the testbed covers a range of 3.5 

meters and 270°. Due to the vertical position of the LiDAR, the VFoV is limited to 15° either 
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side of the longitudinal axis. Consequently, the LiDAR sensor cannot perceive the traversable 

surface or small objects in the circular area immediately around the autonomous platform. The 

ultrasonic sensor array compensates for this towards the front of the autonomous platform. 

 
Figure 29: Platform setup indicating the horizontal FoV of the radar, the LiDAR, and the ultrasonic sensor array. The LiDAR 
provides midfield depth data, the radar provides far-field depth data, and the ultrasonic sensor array provides near filed depth 
data. 

Put simply, LiDAR provides midfield depth data, the Delphi ESR provides far-field 

depth data, and the ultrasonic sensor array provides near filed depth data. Horizontal 

limitations of 360Fly camera is negligible in this setup, as image data captured by the 360° 

Ricoh V camera compensates for the restricted FoV at the rear of the testbed. The Wansview 

IP cameras have a somewhat restricted FoV due to their position. However, since they are 

primarily concerned with gathering data over which the autonomous platform has previously 

travelled – the limited resolution can be disregarded. 
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3.7 Sensor Data Representations 

The term input device denotes that the sensor is only part of a bigger system that 

controls the response of a device like a microcontroller or a processor. Fundamentally, a sensor 

converts a signal from one domain to another that can be easily measured [288]. For example, 

a Light Dependent Resistor (LDR) converts the intensity of the light to resistance. The higher 

the light intensity, the higher the resistance. Generally, sensors can be broken down into two 

main groups – active and passive. Active sensors require power to operate. Passive sensors do 

not require any power. While both types can measure the same thing, they do so in a very 

different way. Further divisions can be made based on the medium there measuring; Electric, 

Biological, Chemical, Radioactive, etc. or on the conversion phenomenon they generate; 

Photoelectric, Thermoelectric, Electrochemical, Electromagnetic, Thermooptic, etc. The 

output of the sensor can be either Digital or Analog. Sensors that produce an analogue output 

generate a continuous signal that changes with respect to the quantity being measured. 

Analogue signals are not prone to quantization errors and match the response more carefully. 

Digital sensors, on the other hand, work with discrete values that represent the analogue event 

there measuring. 

The sensors used to capture the datasets can be grouped. The first group is IMU data 

gathered by telemetry sensors. The second group is the optical sensors, and the third group is 

the proximity sensors. While the IMU data gathered by the telemetry sensors, is valuable 

information, it was not used in this research. The sensor data used during this research was the 

wide-angle camera data, the LiDAR data, the Kinect data and the ultrasonic sensor array data. 

All the sensors reported on in this thesis can be classed as mechanical-electrical input devices. 

They measure a change in the event they are monitoring and provides an output. The input or 

event being monitored generates an output signal concerning a specific physical quantity being 

measured. For example, RGB and ultrasound data record information in quite different ways. 

cameras use reflected light, and ultrasound uses reflected sound. Furthermore, the data is 

structured very differently, RGB in a � × $ × 3  matrix and ultrasound in a � × �  array. 

Regardless of the difference in structure or the principle of operation, when pointing in the 

same direction, both sensors capture the same thing. 

3.7.1 RGB Data 

RGB camera images – often referred to as true colour images – are composed of an 

m-by-n-by-3 matrix. Each of the three layers of the matrix denotes a different component, red, 
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green, and blue. Conversely, the m element of the matrix denotes the row, and the n element 

denotes the column where the colour is stored. When an image is being captured, the light 

reflected off the object is passed onto a sensor at the back of the lens. Generally, there are two 

main types of camera sensors, Complementary Metal Oxide Semiconductor (CMOS) or 

Charge-Coupled Device (CCD). While CMOS is more common today, the principle of 

operation entails the capturing of photons that hit the sensor and converts them to an electrical 

signal – like an LDR. 

The electrical signal that each element of the sensor produces is stitched together to 

form an m-by-n-by-3 matrix. The colour of each pixel, denoted by red, green, and blue 

intensities, is stored at those coordinates and represents the location and colour of specific 

points in the image. The number of rows and columns denotes the aspect ratio or size of the 

image. The values stored at the individual cells of the matrix range between 0 and 1. For 

example, a pixel at the (m1 n1) coordinates whose colour components are (0,0,0) would display 

in the top left corner as black. Alternatively, a pixel at the (mi nj) coordinates, whose colour 

components are (1,1,1), would display white in the bottom right corner. Where i and j are the 

maximum value of the aspect ratio, and incidentally represent the max ranges of the FoV. 

3.7.2 RGB-D Data 

There are similarities between RGB and RGB-D images. With RGB images, the data 

is structured as a � × $ × 3 matrix, where each layer of the matrix represents a Red, Green, 

and a Blue element of the colour. The location coordinate of any pixel can be identified by the 

row (m), and column (n) of the matrix and the colour of that pixel is denoted by different RGB 

layers. By adding a new layer to the structure, the image can be described as an RGB-D or 

� × $ × 3 + �, where m is the row, n is the column, and D is the depth element of the pixel. 

In turn, the pixel represented by the row, column, and the depth has a colour assigned to it. It 

sounds complicated, so it is easier to view it as a 3D coordinate with an assigned RGB colour. 

The RGB-D data is captured using a Microsoft Kinect V2 sensor. The Microsoft 

Kinect v2 consists of an RGB camera, an IR camera, an IR projector, and a multi-array 

microphone. With an angular FoV of 62° horizontally and 48.6° vertically, the RGB camera 

can provide the image with the resolution of 640×480 pixels at 30 Hz (optionally 1280×1024 

pixels at 10 Hz) [289]. The depth sensor (IR camera and IR projector), provides depth images 

with nearly parallel configurations (640×480) pixels at 30 Hz; angular field: 58.5° horizontally, 

46.6° vertically [290]. 
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3.7.3 Point Cloud Data 

Point Cloud data is a representation of a collection of 3D coordinates in space. It is 

generally captured by a 3D or 2D scanner, LiDAR, or specialist cameras. The data structure is 

different in many ways to the structure of the RGB camera sensor. The RGB data is structured 

and ordered, making it ideal for classification tasks using a CNN. Unlike RGB data, Point 

Cloud or 3D data is unstructured and without order [291]. For example, the CCD or CMOS 

sensor at the heart of the camera captures reflected light from a subject. The specific location 

on the sensor that the reflected light strikes is recorded along with the true colour value of the 

reflected light. This adds structure and order to the data that represents an image. Conversely, 

point cloud data captures the location of an object in 3D space. There is no sequence in which 

the ranges are recorded, and the number of points may vary from scan to scan. Furthermore, 

while the instruments used to measure the points in space vary in resolution, they all return 

either Spherical, Cylindrical or Cartesian coordinates of the objects they are measuring, hence 

the unstructured and unordered description.  

The data captured by the VLP-16 LiDAR are x y and z values with millimetre accuracy. 

The VLP-16 is a low powered compact optical sensor with a useable range of up to 100m. The 

VLP-16 utilizes 16 emitter detector pairs measuring a total of 300,000 data points per second. 

Data is captured as coordinates over 360° on the horizontal axis and 15° either side of the 

origin on the vertical axis [292]. While the captured data points are not recorded in sequential 

order when plotted as a whole, they reproduce a workable representation of the object the 

sensor detected.  

3.7.4 Ultrasonic Depth Data 

While the ultrasonic sensor principle of operation differs significantly to the camera, 

the fundamentals behind both are primarily the same. Ultrasonic sensors measure distance by 

using the time it takes for a soundwave to reflect off an object inside the FoV. The soundwaves 

used to measure the distance are propagated from the sensor to the objects through an elastic 

medium such as air. The typical range of operation of an ultrasonic sensor is between 40 kHz 

to 50MHz. The speed at which the sound travels through the elastic constant is dependent on 

temperature and relative humidity. Ultrasonic sensors can also be used for relative density 

measurements, discontinuities in metals, composites, plastics, ceramics, and for water level 

detection. 
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To capture the range, the ultrasonic sensor transmits a short burst to a target. In turn, 

the target reflects the soundwave to the sensor. The time it takes for the echo to return to 

the sensor is used to calculate the distance using the speed of sound for the medium, air, as 

it travels through. Ultrasonic sensors are composed of two main components – a transmitter 

and receiver pair. The transmitter emits a short 40KHz burst before the receiver captures 

the reflected sound. In this case, it is fixed to hear only 40KHz frequencies. Onboard 

processing calculates the time of flight for the emitted signal and converts it to a range. 

The ultrasonic sensor array used in this research was developed in-house and consists 

of 6 transmitter and receiver pairs. The transmitter and receiver pair fire sequentially from 

right to left at intervals 0.02 seconds and measures ranges in cm. They take a total of 36 data 

points or six full scans of the area towards the front of the platform every second. Figure 22 

shows the assembled ultrasonic sensor array; sensors are positioned at 5° 15° and 25° of the 

longitudinal axes can accurately measure ranges with centimetre accuracy. Object ranges are 

captured by individual sensors. Distances are timestamped and logged as a string, indicating 

the proximity of objects within the 5-meter of the autonomous platform. 

3.8 Data Collection 

There are many decisions to be made before collecting a dataset – sensor modalities, 

event preparation, and the labelling protocol. The researcher's choice was guided by the 

requirements identified in Section 3.5.1. Data logging and the method for labelling the 

captured data was designed to record the high variability of indoor and outdoor scenes. For the 

LboroLdnAV dataset, frames were captured from the platform when it was moving, over three 

months. For the LboroLdnHAR dataset, we appended a Kinect sensor to the autonomous 

platform. Since the Kinect sensor was designed to maintain in a stationary position, frames 

were captured by a stationary platform. Except for a Kinect sensor appended to the 

autonomous platform, the sensor setup remained the same.  

The sensor location and orientation described in the experimental setup was 

scrutinized before each data capture period. Sensor location and orientation are integral to the 

geometric alignment of data, so special attention was taken to make sure the sensors did not 

move during data collection. Frame rate sequencing for the individual sensors was explicitly 

chosen to facilitate the maximum resolution of individual sensors and to prevent the ghosting 

of captured objects. Ghosting occurs when the frame rate of a sensor falls too low, and a 

moving subject appears twice in a single frame of data captured. 
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3.8.1 Loughborough Autonomous Vehicle Dataset 

As of Monday 16th December 2019, the LboroLdnAV dataset consists of 45.6 hours 

of Video, LiDAR, and ultrasound data collected over 1.2 km of indoor and outdoor 

environments under a variety of scenarios. Data collection is ongoing and expected to conclude 

during the summer of 2021. This will assist in the development of Multimodal ML algorithms 

for use by autonomous robots.  

 
Figure 30: The primary data collection routes were traversed between 28th May 2018 and to 1st October 2018, and 1st November 
2019 to 30th January 2020. The traversable distance was a total of 1.2 km over four different locations, Route 1 Lesney Avenue, 
Route 2 BT 

 The primary data collection route is shown in Figure 30. Not all sensors were in use 

during the data collection period. The data release reported in this Chapter is only the first part 

of a more extensive project that is currently (16th December 2019) in the process of expanding 

into Sri Lanka. As of the 16th December 2019, data was collected on the Here East campus in 

Queen Elizabeth Olympic Park, London. A permit and license were granted by Here East to 

collect data between 28th May 2018 to 18th August 2018 and 1st November 2019 to 30th January 

2020. Although the data collection is over an extended period, it was not possible to collect 

data every day – due to restrictions imposed by the management company. 
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In total, there were 2.5 million frames captured by four cameras; 672k frames were 

captured by the 360Fly Wide-angled camera; 1.2 million frames were captured by the Ricoh 

Theta V 360° camera, and 624k frames were captured by the two Wansview IP cameras. Both 

the LiDAR and ultrasonic sensor array captured a total of 252k and 220k scans, respectively. 

Due in part to the resolution and the frequency of operation and the fact that some sensors 

were not in operation, there is a disparity between different quantities of data collected across 

sensors (i.e., Delphi ESR). 

To help with everyday ML tasks, 7 object classes were annotated - People; Bus; Van; 

Car; Motorbike; Cyclist; and Traversable Surfaces. Each with accurate bounding boxes or 

polygons at 5Hz. While four cameras were used during the data collection period, only one of 

the data streams were used for the FSD process, the Ricoh Theta V 360° camera. Data was 

annotated by hand, and a ground truth label for the seven classes is appended to the dataset. 

Different dataset requirements mean different quantities of data are required for the 

algorithms proposed in Chapters 4 and 5. All data captured and used during algorithm 

development was chosen based on the diversity of foreground and background objects, and 

the overall scene layout. 

While output data from the RPM sensor, 3 Axis Magnetometer, and Voltage divider 

was not used in this research, it is equally valuable. The data is very low-level and 

predominantly used in applications such as SLAM. The LboroLdnAV dataset contains data of 

everyday objects encountered and captured by the seven sensors. This release of the dataset 

focuses on indoor and outdoor environments with a focus on traversable surfaces. 

The acquisition period of the LboroLdnAV dataset spanned 28th May 2018 to 1st 

October 2018. The dataset covers 1.2 km of recorded driving in Queen Elizabeth Olympic 

Park, London. The autonomous platform was autonomously driven throughout the data 

collection period, with a minimal degree of human interaction. Sensors used during this 

research were the 360Fly wide-angled camera, the Ricoh 360° camera, two Wansview IP 

cameras, VLP-16 LiDAR scanner, and the ultrasonic sensor array. 

Figure 31 presents a montage of images illustrating the diverse range of buildings and 

short-term lighting changes encountered by the testbed. Table 6 details the date, location, 

classes captured, and data streams of the LboroLdnAV dataset, while Table 7 lists summary 

statistics for the dataset so far. 
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Figure 31: Montage of six images taken on 28th May 2018, illustrating the diverse range of buildings and short-term lighting 
changes encountered by the platform. 

Data collection periods were chosen to cover a wide range of classes, Pedestrian, 

Cyclist, and Vehicle Traffic, under many different environmental conditions. The dataset 

appended to this research is a partial release, and the weather was mostly sunny throughout its 

collection. 

TABLE 6: DESCRIPTION OF THE LBOROLDNAV DATASET 

Title LBORO Dataset 

Summary Data captured by seven sensors 

Date 28/05/2018 to /01/10/2018 and 01/11/2019 to 30th January 2020t 

Location East Bay Lane, Lesney Avenue, BT Sports Plaza, Canal-Side  

Total Size 23.75 hours over 1.2 km 

Class People, Bus, Van, Car, Motorbike, Cyclist, Traversable Surfaces 

 
TABLE 7: SUMMARY STATISTICS FOR THE LBOROLDNAV DATASET 

Sensor Type Size 

360Fly Wide-angled camera Image 2.34 GB 

Ricoh Theta V 360° camera Image 4.05 GB 

Wansview IP camera (x 2) Image 0.24 GB 

HC-SR04 Ultrasonic Array 2D Scan 5.6 MB 

VLP-16 LiDAR 3D Scan 12.8 GB 

Delphi ESR 2D Scan N/A 
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Figure 32: Illustrates two different views from a single location under different environmental condition. Note environmental 
conditions are limited for this release of the dataset as most of the data was logged over the summer months. 

Figure 32 illustrates the two views from a single location under different 

environmental conditions. Figure 33 presents the environmental condition and the number of 

traversal days for different journeys. Due to events on the Here East campus and conditions 

dictated to the platform by the driver policy, it was not possible to retrace the exact route every 

time. 

 
Figure 33: Traversals for different environmental conditions for the LboroLdnAV dataset. Factors influencing the route, include 
events on campus and driver policy. The license and permits were granted for three months between 28th May and 1st October 
2018.  
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Sensors lenses and instruments were adequately maintained to prevent the build-up of 

contaminants. A label for each traversal was added to the captured data. Traversals were 

grouped by labels for an accessible collection of routes. Care was taken to ensure that all data 

was carefully archived, named commented, and stored securely as per data protection acts. 

Conditions of the License and Permit granted by the management company restricted 

the speed at which the autonomous platform could operate – less than 4kph. While the 

autonomous platform can operate at speeds of up 22kph, there would be little point in doing 

so since the frequency of operation of the LiDAR, and ultrasonic sensor array would return 

inaccurate measurements – ghosting and cross talk. 

Ghosting is a replica of a recorded image, offset in position, that occurs when the 

subject being measured is detected twice in the data because of the frequency of operation. Of 

course, it is possible to increase the frequency of operation of the individual sensors. However, 

in the case of LiDAR, the resolution would significantly reduce, and in the case of the 

ultrasound, it would result in crosstalk. Cross talk between ultrasonic sensors occurs when the 

transmitted signal of one sensor is picked up by the detector of another. Somewhat like 

ghosting, it interferes with ranges measured by the sensor and produces a false distance 

measurement. 

3.8.2 Loughborough Human Activity Recognition Dataset 

The LboroLdnHAR dataset contains samples of typical human activities in indoor 

environments, captured by three sensors – camera, Kinect, and LiDAR. The LboroLdnHAR 

dataset is composed of 6712 RGB, RGB-D, and Point Cloud samples, annotated and classified 

depending on the activity. 

Each sample contains one of the 16 subjects performing one of the nine activities. 

Activities were chosen based on a review of related work in Section 3.3.2. The focus was on 

indoor activities, where subjects had a limited attention span. The activities were sitting on a 

chair, standing and texting, sitting on a stool, lying on the couch, walking, walking and texting, 

carrying objects, pulling objects, and running. These activities were chosen because of the 

subject's lack of attention to their surroundings – it is highly likely that humans do not pay 

attention to an indoor AV. The activities selected helped facilitate the later development of 

driving policies for indoor AV in critical scenarios. 

The LboroLdnHAR dataset was split into two subsets. The first subset contained RGB 

samples and consisted of images with annotated ground truth Region of Interest (ROI) labels, 
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indicating the location of people in the frame. This subset was used to train the object detector. 

The second subset was the activity annotated point data. This subset was used to train the point 

cloud classifier.  

TABLE 8: DESCRIPTION OF THE LBOROLDNHAR DATASET 

Title LboroLdnHAR 

Date 17/06/2018; 18/06/2018 

Size 16 participants x 9 activities x 3 Sensors (RGB-D; LiDAR; 360° camera) 

Activities / Classes 
Carrying Boxes, Lying Down, Pushing A Board, Running, Sitting on a Chair, Sitting on a 

Stool, Standing While Texting, Walking, Walking While Texting 

Contained Data Streams 

360° camera Stream (each file contains a Scenario, ca. 2 min); LiDAR Stream (each file 
contains a Scenario, ca. 2 min); RGB Stream (captured by RGB-D sensor); Depth Map 

(captured by RGB-D sensor); Point Cloud of moving objects (captured by RGB-D sensor); 
body joint model (extracted from RGB-D sensor) 

Joints Kinematics generated 
by iPi Mocap Studio [293] 

coordinates (51 frames); velocity (50 frames); acceleration (49 frames) 

Body Joints  

Head; Neck; Chest; Middle Spine; Lower Spine; Hip; Centre of mass; Centre of mass 
projection to the ground; Left-Hand and; R Eye; Effector Head; R Clavicle; R Shoulder; R 
Forearm; Right-Hand; L Clavicle; L Shoulder; L Forehand; L Hand; R Thigh; R Shin; R 

Foot; R Toe; Effector R Toe; L Thigh; L Shin; L Foot; L Toe; Effector L Toe 

 
TABLE 9: SUMMARY STATISTICS FOR THE LBOROLDNHAR DATASET 

Sensor Type Size 

Kinect V2 RGB-D 0.5 GB 

Ricoh Theta V 360° camera Image 0.9 GB 

VLP-16 LiDAR 3D Scan 0.6 GB 

 

Figure 34: The layout of furniture and the position of the autonomous platform during the collection of the LboroLdnHAR dataset. 
The data was collected throughout the 17th and 18th August 2018. In both cases, the subjects start and finish the activity with a 
T pose. 

The LboroLdnHAR dataset consists of 6712 LiDAR, RGB-D, and RGB aligned and 

transformed samples – 5,916 for training, 787 for validation, and 9 purely for visual 

presentation of this research. The dataset was divided in this manner to reduce the chances of 
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overfitting when training the network but still to retain sufficient quantity (~10%) for 

validation. Table 8 details the date, classes captured, and data streams of the LboroLdnHAR 

dataset, while Table 9 details the dataset statistics.  

 
Figure 35: Montage of 6 images taken on 17th and 18th August 2018. The images illustrate six of the different activities performed 
during the data collection period. Carrying a box, pushing a board, running, sitting at a desk, standing, and walking while texting.

To evaluate the general applicability of ML algorithms, it is critical to guarantee an 

experimental setup that allows replication for subsequent tests [287]. Conditions, where each 

sensor reaches its optimal performance level, needs to be identified. Doing so will reduce the 

impact of sensor-specific limitations, such as minimum operative distance, to a negligible 

amount. This premise led to our experimental setup depicted in Figure 28 and 29. 

Sensors used during this portion of the research were the Ricoh 360° camera, VLP-16 

LiDAR scanner, and the Kinect RGB-D camera. All data was captured indoors under fixed 

lighting conditions. The activities were sitting on a chair, standing and texting, sitting on a 

stool, lying on the couch, walking, walking and texting, carrying objects, pulling objects, and 

running. The focus of this dataset was to capture humans performing typical everyday 

activities. Figure 34 shows the layout of the different scenarios when collecting the 

LboroLdnHAR dataset. Figure 35 shows a montage of six images collected over two days 

taken on 17th and 18th August 2018. While data was being collected, the participants were 

advised to pay little heed to the AV used for capturing the data. 
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3.9 Summary 

Autonomous platforms used in transport, for the most part, utilize similar sensors – 

LiDAR, Radar, ultrasound, camera, and GPS. When robots that assist us in our daily tasks are 

expected to operate indoors, the combination LiDAR, Radar, ultrasound, camera, and GPS 

needs to be reconsidered. To further compound the problem, each type of sensor – used for 

perception – has its limitations. Therefore, given that each sensor has its limitations, the 

diversity offered by multimodality can only offer a positive contribution to the perceived 

ability of any machine. 

Typically, AVs are composed of three technological pillars: Sensing and perception, 

Localization and mapping and Driver Policy. In this chapter, we present a scalable, multi-layer 

context mapping and recognition system based on the three pillars listed above. The 

architecture has four layers: The Sensing Layer, The Data Analysis Layer, a Multi-layered 

Context Representation, and The Application Layer. The Sensing Layer is primarily concerned 

with gathering and presenting different types of information to the data analysis layer. The 

Data Analysis Layer consists of data pre-processing, data fusion, object detection, FSD, and 

HAR. Classifications made in the Data Analysis Layer is passed onto the Context 

Representation layer to be called by the different applications as needed. Finally, The 

Application Layer communicates with the Context Representation Layer to acquire location-

dependent context information. It should be noted that the Multi-layered Context 

Representation and the Data Analysis Layer are discussed in Chapter 4 and 5, respectively. 

Currently, the autonomous platform roams and collects data with the possibility for 

human intervention should it be required. While human intervention is not desired, it was a 

prerequisite of the license and permit needed to perform the experiments. The policy that 

drives the platform is rudimentary at most. Decisions are hard programmed based on proximity 

of objects relative to the ultrasonic sensor array, a colour red that the 360° camera perceives, 

and the operator governing the movement of the platform. 

As of the 16th December 2019, the LboroLdnAV dataset consists of 45.6 hours of 

Video, LiDAR, and ultrasound data collected over 1.2 km, displaying a variety of scenarios 

from both indoor and outdoor environments. The collection of data is an ongoing project to 

assist in the development of Multimodal ML algorithms for use by autonomous robots. In total, 

there were 2.5 million frames captured by four cameras – 672k frames captured by the 360Fly 

Wide-angled camera, 1.2 million frames captured by the Ricoh Theta V 360° camera, and 
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624k frames captured by the two Wansview IP cameras. Both the LiDAR and ultrasonic sensor 

array captured a total of 252k and 220k scans, respectively. The disparity between different 

quantities of data is due to resolution, frequency of operation and the fact that some sensors 

were not in operation. 

The LboroLdnHAR dataset consists of 6712 LiDAR, RGB-D, and RGB aligned and 

transformed samples – 5916 for training, 787 for validation, and 9 for demonstration. The 

dataset was split into three subsets. The first subsets contained RGB samples and consisted of 

images with annotated ground truth ROI labels, indicating the location of people in the frame. 

Both datasets contributed to the algorithms reported on in chapter 4 and 5, respectively. 

They were developed to address the shortcomings – unsuitable operating environments, lack 

or unsuitable modalities. While some datasets came close to the requirements, they all fell 

short of what we required to progress research in the areas of free space detection and human 

activity recognition.  
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Chapter 4 A Self-Evolving Free Space Detection 

Model 

4.1 Introduction 

Several major automobile manufacturers and technology companies have set 

ambitious targets to commercially launch fully AV’s by the dawn of the next decade. Whether 

you believe them or not, these automobile giants, such as; Tesla Motors, BMW, Ford Motor 

Co., and Volvo, have promised to have fully autonomous cars on the road by 2030 [294]. 

Furthermore, the Chinese Government partnered with Chinese internet giant Baidu and set 

2025 as the year by which 10-20% of vehicles will be highly autonomous, and by 2030 10% 

of cars will be fully self-driving [295]. 

Despite the promises from these multinational giants, vehicles that are good enough 

to roam extensively without human involvement are still a distant reality, and this warrants 

extensive research effort [200]. For example, when the California Department of Motor 

Vehicles (DMV) published it is 2018 annual performance report on testing self-driving cars 

on public roads, there were numerous cases (39%) where the driver had to take control of the 

vehicle [296]. If numerous drivers are taking control of self-driving cars, the algorithm used 

for these Intelligent mobile robots, are falling short of their objectives. In this Chapter, a core-

functionality of the proposed robotic platform, when applied to FSD, is illustrated. Considered 

part of the Multi-layered Context Representation and Data Analysis Layer, the proposed 

framework intends to demonstrate a solution for FSD that works on all kinds of surfaces. 
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This chapter is organized into the following sections: Section 4.2 presents the problem 

definition, motivation, and related work. Section 4.3 provides an overview of the different 

sensor data representations before moving onto the geometric alignment of the sensor data in 

Section 4.4. Section 4.5 provides an overview of Image and ultrasound-based FSD before 

discussing the proposed frameworks for online active FSD. Section 4.6 compares the results 

of the proposed framework to the DL approach for FSD. Section 4.7 summaries of the work 

presented in this Chapter. 

4.2 Problem Definition 

This chapter reports on FSD using sensor data fusion derived from data gathered by 

an ultrasonic sensor array, and the luminance data from a wide-angle imaging sensor. The data 

form the ultrasonic sensor array comes in the form of 2D ranges and can be used to improve 

FSD using a semi-supervised form of ML called online active Learning. 

FSD research is predominately focused on camera sensors as in [297]–[301], radar-

based FSD as in [302], [303], fusion-based FSD using camera LiDAR and/or Radar [116], 

[303]–[305]. Almost all the FSD algorithms reviewed, rely on a 3D reconstruction either by 

stereo vision, sensor data fusion of camera, radar and, or LiDAR before fitting a model to the 

data stream. Of course, these models can vary in complexity, and have increasing computation 

requirements. However, the cost can be significantly reduced by considering the profile of the 

road as horizontal and getting the machine to teach itself. 

One school of thought is to view FSD as a classification problem where pixels are 

classed as free space, or not free space [116], [306]–[308]. Here feature information is used to 

identify what class pixels reside. Problems arise where data is limited. A classifier is only as 

good as the data used to train it. A solution for FSD needs to work in all kinds of environments, 

under all kinds of lighting conditions and on all surface types – both indoor and outdoor, 

carriageways, footpaths, grass, carpet, and tiles. It needs to learn by querying information from 

image sensors against information from a reliable sensor stream, such as ultrasound or LiDAR. 

Furthermore, because the framework uses two sensor modalities, the system needs to be able 

to self-calibrate. While there are arguments for and against, self-calibration was chosen over 

manual calibration. Although manual calibration generally proves to be more accurate, the 

practical application of placing a checkerboard in front of the platform every time it roams, 

had to be considered. With this in mind and the diverse environments the platform will operate 

in, the algorithm needs to be robust and function under different conditions. It cannot be 
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influenced by changes in lighting and should work reliably within the range of the different 

sensor streams and different environments. 

4.2.1 State-of-the-Art Free Space Detection 

Inherent complexities of the built environment prevent AV from being hard 

programmed with a fixed set of rules that foresee all possible scenarios they could encounter 

[282]. Therefore, AV need to learn to make decisions autonomously based on the events they 

encounter and the objects they perceive. Only in this manner can an adequate driver policy be 

derived – where the AV self-evolves over time, depending on objects the agent encounters. 

FSD can be regarded as the most fundamental element of perception – crucial for 

researchers to understand, so we do not collide into other objects. In structured environments 

like carriageways, free space is mainly composed of a delineated road surface. Traditionally 

these areas are either detected based on colour [309] or texture segmentation [310], deduced 

from stereovision-based obstacle detection [311], or a combination of both [312]. Knowledge 

about free space is vital to understanding how to navigate one’s surroundings. Indirectly, FSD 

assists in the location estimation of an Intelligent autonomous robot. Since location estimation 

is used for indoor or outdoor navigation – FSD is vital to the safe operation of an autonomous 

platform. 

The majority of FSD research has been focused on outdoor activity and the safe 

manoeuvring of a vehicle in traffic. As a result, lane-detection and FSD have often been 

clumped together, especially when considering Advanced Driver Assist Systems (ADAS) 

[313]. In the most basic form FSD and lane-detection algorithms usually solve the problem 

using three different steps; pre-processing images, filter noise, and classification [314]. Most 

research utilizes single or multiple cameras. The pre-processing stage is mostly as simple as 

colour space conversion, such as chroma-based analysis, that are typically used to reduce noise 

and, or to mitigate issues with shadow [315], [316]. In other cases, the images are transformed 

to produce a birds-eye view, in effect producing an OGMap [317]. The final step of most 

contemporary FSD pipelines is to extract features from the image and classify them. In most 

cases, the process of learning the features has been delegated to a CNN. While CNN’s are 

good at identifying the features that allow them to make a classification, they do not understand 

free space the way humans do. This makes it difficult for a machine to understand the 

difference between surface and traversable space. 



MULTIMODAL MACHINE LEARNING FOR INTELLIGENT MOBILITY 89 

89 

Generally, when using Supervised Learning methods for image processing, a CNN 

obtains superior results with respect to traditional feature learning algorithms. However, in 

scenarios where data is sparse, a CNN can be outperformed. CNN for road boundaries [318], 

lane markings [128] and semantic segmentation of free space [319], get information about the 

geometric attributes of the lane from the free space they detect. Other methods use clustering 

and Unsupervised Learning to distinguish the difference between lanes [320]. For example, in 

[318], researchers used a CNN to segment the different lanes on a roadway.  

Researchers in [321] presented a pooling module using a pyramid structure to 

aggregate background data. The module links the feature map developed by ResNet to the 

output of the unsampled layer. In addition to an unusual pooling module structure, [321] 

reported on a new loss function to solve difficulties with mismatched relationships, confusing 

categories, and inconspicuous classes. In [322], researchers reported on a Dense Up-sampling 

Convolution (DUC) network and a Hybrid Dilated Convolution (HDC) network. Both the 

DUC and HDC networks solved the up-sampling and dilated convolution problems by 

dividing the label map into a subsection with the same size as the input feature map. These 

techniques facilitated work directly on the feature map and the dilation rates of ResNet – the 

underlaying network used in these cases to detect free space. There are many techniques used 

for FSD. While the majority of state-of-the-art use CNN to solve road detection tasks, they do 

so with large quantities of data. Although CNN’s have demonstrated exceptional ability to 

generalize, there are difficulties in the classification of surfaces never encountered before when 

data is lacking. 

4.2.2 Motivations and Requirements 

While there are numerous attempts at solutions from academia, most of the 

experimentation and testing of an AV in different real-life conditions is being led by industry 

[323]. For example, the DMV in California issued 52 permits to test AV on the road. Of those 

permits issued, two were granted to academic institutes while the remainder being granted to 

industry [324]. Of course, having an accessible testbed, open-source data, and publicly 

evaluated datasets would allow researchers to compare algorithms objectively. Most 

developers use raw data void of the mechanisms used to train the agent, avoid challenging 

weather and lighting conditions, or proprietary data, which is rarely made available. This 

combination of obstacles is essential to overcome if we wish to benchmark a ML system for 

full 24/7 operation in all environments. 
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Although modern ML algorithms are an essential contribution to the field of AI, it is 

only one part of the grand challenge of constructing intelligent machines. While ML 

algorithms may understand the relationship between the inputs and the outputs, it cannot 

understand simple relationships – such as the relationship between surface and traversable 

space. This is one area where our understanding of the environment differs from that of the 

machine. With modern-day ML, machines understand the patterns that define the environment, 

whereas humans understand the environment from an egocentric point of view [325]. 

Consequently, most ML algorithms have difficulty understanding abstract ideas and has no 

obvious way of developing logical assumptions or integrating abstract knowledge [326]. For 

example, in contemporary methods of FSD – where traversable space is identified from 

features learned from data – the deep network holds little knowledge about what free space is. 

While the most advanced CNNs may recognize the features they learn, features that define 

free space – they do not understand the relationship like humans do. 

Developing ML algorithms that form logical assumptions, integrate abstract 

knowledge, and understand abstract ideas is the primary objective of any AI research [327]. It 

may not be possible to construct the same relationship understanding that humans have. And 

it may also be possible to develop ML algorithms that can integrate abstract knowledge from 

different sensor streams to develop the ability to make logical assumptions about different 

sensor data. In this case, the machine may not understand free space in the same way humans 

do but will have a sort of wisdom learned from a different sensor stream. Under these 

circumstances, the machine stands a better chance of detecting free space when presented with 

more data. It will, in effect, self-evolve over time. The requirements for a free space algorithm 

can be defined as the ability to: 

(1) Learn new data as it is presented to the autonomous platform. 

(2) Develop an understanding of traversable space without large quantities 

of data at the start. 

(3) Understand the relationship between two different sensor streams and 

make logical assumptions about different sensor data. 

The proposed framework presented in this chapter was developed to address these 

requirements. 
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4.3 Geometric Alignment of Sensor Data 

The purpose of the geometric alignment is to find the corresponding pixel in the 

camera output for each data point output by the ultrasonic sensor array. In simple terms, we 

are taking the plan view of the OGMap, translating and aligning it to the elevated view of the 

camera data.  

 
Figure 36: Illustrates the plan view of the sensor setup showing the location of the ultrasonic sensor Array and the wide-angled 
360Fly camera. It should be noted that a denotes the range between the ultrasonic sensor array and the object, it is not the 
perpendicular distance. 

To realize this, we need to know the relative location of different sensors – ultrasonic 

sensor array and the camera. A plan view of the autonomous platform and the sensor setup is 

graphically illustrated in Figure 36. Figure 37 shows a side elevation of the sensors. 

 
Figure 37: Illustrates the elevated view of the sensor setup showing the location of the ultrasonic sensor array and the wide-angled 
360Fly camera. 
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For this derivation, consider an object ? at a distance (�	 of 140 cm from the focal 

point of the ultrasonic sensor array. The ultrasonic sensor array consists of 6 HC-SR04 sensors 

positioned at 5°, 25°, and 45° either side of the longitudinal axis. In this case, @ = 180° −
45° = 130° for an object ? identified to the right front of the ultrasonic sensor array. The 

longitudinal �E	 and vertical ��F	 distance between the camera and ultrasound sensors array is 

45 cm and 65 cm, respectively. The ultrasonic array is positioned �GH	 33 cm above the ground. 

Considering the distance � between the object ? and the ultrasonic array at an angle of B, we 

can describe � - the distance between the camera and the object ? - as: 

 � = -�� + E� − 2 × � × E × cos �@	 (Equation 13) 

In turn, the angle L between vectors � and E - can best be described as: 

 L = cos7� M�� + E� − ��
2 × � × E N (Equation 14) 

Knowing the azimuth angle L and the horizontal distance �, we can use the resultants 

from Equation 13 and 14 to solve for the range �E′	 between the object ? and the camera: 

 EF = -�′� + �� (Equation 15) 

From Equation 15, we can calculate the corresponding elevation angle P for the object 

? relative to the camera: 

 Ω = cos7� M�� + E′� − �′�
2 × � × E N (Equation 16) 

The purpose of this alignment is to find the corresponding pixel in the camera output 

for each data point output by the ultrasonic sensor array. We assume that the longitudinal axis 

of the camera and the ultrasonic sensor array are aligned; however, an offset can be accounted 

for should it be required. Although this process does away with the need for calibration, this 

method of geometric alignment cannot be relied upon as an entirely robust mechanism. Even 

if it works quite well, unique imperfections in the sensor assembly and per-unit variations in 

the manufacturing processes can cause the sensor to deviate from the ideal geometry. Another 

problem that arises when fusing data from different sources is the difference in data resolution. 

It should be noted that the resolution of the ultrasonic sensor array is substantially lower than 

the camera. Although the resolution could be increased, it will never meet that of the camera 

data, and therefore is regarded as an intrinsic shortcoming of this process. 
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4.4 Self-Evolving Free Space Detection 

One of the fundamental challenges to training most ML algorithms is access to 

annotated data. Online and active Learning provides a solution to this fundamental problem. 

Here a reliable sensor stream is used to label camera data as it becomes available before 

updating the SVM predictor for future events. Of course, we could use an alternative ML 

method, such as a neural network. However, the time to train the alternative method needs to 

be considered since this method is expected to update or re-train in as short a period as possible. 

For this reason, an SVM was chosen to serve as the classifier. Using this approach improves 

the classifier’s ability to recognize free space when it has little information to start with. 

Typically, a person is queried instead of a sensor. However, when this process is used in 

conjunction with sensor fusion – it does away with the need of a person – and returns a result 

that is in effect case-specific to space the machine has just encountered. 

 
Figure 38: The proposed FSD pipeline. We first train an SVM on a small quantity of data. As new data becomes available, we 
quarry the robust sensor stream as to is class.  

Figure 38 shows the proposed pipeline for a self-evolving free space detection model. 

Figure 39 shows the architecture of the proposed FSD framework. The proposed framework 

utilizes a robust 2D ultrasound sensor stream to self-learn. It improves the relative uncertainty 

of free space identified using monocular camera data alone. The framework is composed of 

three elements – Sensing and Perception, Localization and Mapping, and Driver Policy. 



MULTIMODAL MACHINE LEARNING FOR INTELLIGENT MOBILITY 94 

94 

 
Figure 39: The proposed framework for FSD utilizing supervised and semi-supervised ML. This technique uses online active ML 
methods to self-learn free space and evolve as it encounters new data.  
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The first element is an SVM classifier trained using manually labelled image data. The 

features of the labelled data used to train the SVM were Histogram of Oriented Gradients 

(HOG) and HSV. Feature descriptors are tools used in computer vision to describe useful 

elements of an image or image patch on a pixel-by-pixel basis. 

Both HSV and HOG values are feature descriptors that are commonly used in ML 

[328]–[331]. Usually, feature descriptors such as HOG turn a �� × $� × 3 matrix into a feature 

vector of a certain length. Of course, the patch size can change depending on the requirements, 

which in turn changes the length of the feature vector. While the feature vector makes little 

scenes when viewed as an image, it is the element that is learned by the classifier. It 

dramatically assists researchers in identifying free space. HSV can be used in the same way as 

HOG. Although a feature vector is not generated for the HSV value, it is a feature descriptor 

that is useful in classification. 

In the first element of the proposed framework, the SVM classifier is trained on a 

small amount of both HSV and HOG values. In this case, the ML algorithm learns a basic 

understanding of free space. It stores the output as a kernel function that defines free space 

based on the small training set. The second components generate an OGMap using ultrasound 

and pose data. The ultrasound data is used to label the image data before adding it to the dataset 

and retraining the classifier. This is the online active Learning element, and it continuously 

updates as the autonomous platform traverses’ new space. 

The final element of the proposed framework fuses the OGMap generated by the 

ultrasound sensors with the prediction made in the second element of the proposed framework. 

Outside the FoV of the ultrasonic sensor array, there is no difference between the results 

generated by the second and third elements of the proposed framework. However, inside the 

FoV of the ultrasonic sensor array, the fused data makes a more conservative prediction about 

traversable space.  

It is important to note that the longer the algorithm is in operation, the better it becomes 

at predicting free space. It should also be noted that at each point when the framework is 

presented with new labelled data - it retrains. As a result, any knowledge it has gained about 

free space is lost each time this procedure is undertaken. This makes for an efficient free space 

detector, but it is not cost-effective on resources – since it is performing a task, it has already 

performed in the past. 
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4.4.1 Image Based Free Space Detection 

The image-based FSD algorithm at the start of the proposed framework is a Supervised 

ML algorithm. A training set was developed from patches of the camera images. Each patch 

set was assigned to a class as free space or not. 1,500 image patches of size 8 × 8 were collected 

from ten randomly selected video frames. All videos exhibited a variety of lighting conditions 

from indoors and outdoors scenarios and many different traversable surfaces. HOG features 

and HSV values were extracted from training image patches and used to train the SVM 

classifier. 

The HOG features are calculated for every 4 × 4 blocks within the 8 × 8 patch, while 

HSV values were chosen for the entire patch. An RBF is used as the kernel for the SVM. The 

proposed framework utilizes pre-labelled data to train an SVM. K-fold cross-validation is 

utilized for model selection. In this case, the original sample is randomly partitioned into ten 

equal size subsamples. Of the ten samples, a single sample is retained for validation, with the 

remaining used for training. The inbuilt functions of MATLAB®R2018, an imaging 

processing toolbox ware used for feature extraction and training of the SVM using the function 

‘fitcsvm’[332]. It should be noted that while image-based FSD utilizing an SVM is not state-

of-the-art, it is a starting point for the online active ML element of the algorithm. 

4.4.2 Ultrasound-Based Free Space Detection 

The second element of the proposed framework is a SLAM generated OGMap. 

Typically, an OGMap is used to describe occupied space in a discrete grid. In this case, depth 

information is gathered from ultrasound data to construct a discrete map of the environment. 

Initially introduced in [234], OGMap has long been regarded as the standard for environment 

representation in robotics. 

An OGMap is generated by extracting landmarks from the ultrasound data for 

individual scans before sequentially adding each scan using the RPM and three-axis 

Magnetometer. Using the pose data logged from the RPM and three-axis Magnetometer, it is 

possible to build an OGMap of the area over which the testbed has traversed. Here, all the 

ranges logged by the sensor array are mapped on to a 2D grid. In this case, the depth 

information is gathered from an ultrasound sensor to construct a discrete map of the 

environment. 

Data is transformed and aligned to the camera view, as shown in Figures 36 & 37. A 

typical OGMap generated by the ultrasonic OGMap is depicted in Figure 40. In Figure 40, the 
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white rays emanating from the testbed’s position at the zero coordinates correspond to free 

grid points, while the black grid points indicate occupied space. 

 
Figure 40: Shows the results of the ultrasound OGMap matching Scenario 1 in Figure 41. In this image, the white rays emanating 
from the testbed’s position at the zero coordinates correspond to free grid points, while the black grid points indicate occupied 
space.  

4.4.3 Online Active Learning for Free-Space Detection 

The final element of the FSD algorithm of the proposed framework is a combination 

of unsupervised ML and sensor fusion. Free space is learned from examples that have been 

classified by the data from the ultrasonic sensor stream. Like the first element of the proposed 

framework, each patch is assigned a class. A total of 1,650 image patches of size 8 × 8 were 

used to retrain the SVM. 

Image patches were a combination of data collected from the ten randomly selected 

frames used by the first component of the framework, and the new frames encountered by the 

testbed at that time. HSV and HOG features are extracted from the image patches. The fusion 
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element of this component occurs before the image is annotated. Since the OGMap has already 

been transformed and aligned to the camera data, fusion occurs with little difficulty using a 

logic function. 

4.5 Results and Discussion 

The purpose of the proposed algorithm is to assist the AV with perception tasks. This 

subsection presents the performance and results found during this research. Here the 

effectiveness of the proposed online active Learning Algorithm for Self-evolution of FSD 

(combined semi-Supervised ML and sensor fusion) is compared to the current state of the art, 

DeepLabV3+ [333]. For the most part, existing techniques for FSD are sensitive to lighting 

conditions and have difficulties generalising – because of the infinitely different traversable 

surfaces they encounter. Querying RGB data captured by a camera against a reliable sensor 

stream – ultrasonic ranges – removes the need for the classifier to generalize and reduces the 

influence lighting conditions might have.  

4.5.1 Dataset 

The proposed self-evolving FSD framework was trained and evaluated on the 

LboroLdnAV dataset [280]. The LboroLdnAV dataset consists of 45.6 hours of Video, LiDAR, 

and ultrasound data collected over 1.2 km. Since we were using both ultrasound and camera 

data is was not possible to do cross dataset validation. For the proposed self-evolving FSD 

framework, a small subset of the dataset was used to train the SVM classifier. This subset 

consisted of 3 frames extracted 10 videos displaying a variety of scenarios from both indoor 

and outdoor environments. All images used to train the classifier were annotated, indicating 

traversable space. 

A small subset, 1500-pixel patches, were used to train the SVM classifier. Patches 

were extracted from the 3 frames randomly selected from 10 videos. All videos displayed a 

variety of scenarios from both indoor and outdoor environments. We reduced the number of 

classes in the testing dataset from 7 classes into 2 super classes. For example, Free Space is all 

traversable surfaces. Everything else was grouped into the superclass ‘Not Free Space. During 

the experiments, the testbed was moving at 4kph (1.1m/s), the camera frame rate was 29 fps, 

and the ultrasonic array capture rate was 6 fps. Figure 41 illustrates the screen capture of 

scenarios used for validation. Table 10 provide the scenario details depicted in Figure 41. The 
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subset of the dataset chosen to test the SVM indicates multiple different surface types – indoor, 

outdoor, lino, concrete paving slabs, tarmac, AstroTurf, tiles, and low pile carpet. 

 
Figure 41: A subset of the data used during the comparison between the proposed framework and Deep LabV3+. From the top 
left corner: (a) Scenario 1, (b) Scenario 2, (c) Scenario 3, (d) Scenario 4, (e) Scenario 5, (f) Scenario 6, (g) Scenario 7, (h) Scenario 
8, (i) Scenario 9 and (j) Scenario 10. Scenario details reported in Table 10. 

 

 Column 1  Column 2 Column 3 Column 4 Column 5 

Row 1 

Scenario 1: Indoor 
environment with 
stationary obstacle 

traversing lino. 

Scenario 2: Outdoor 
environment traversing 

changing surface 
(Concrete to Tarmac). 

Scenario 3: Outdoor 
environment traversing 

changing surface 
(Concrete to 
Astroturf). 

Scenario 4: Indoor 
environment with 
stationary obstacle 

traversing tiled 
surface. 

Scenario 5: Outdoor 
environment with 
stationary obstacle 
traversing concrete. 

Row 2 

Scenario 6: Indoor 
environment with 
stationary obstacle 

traversing lino. 

Scenario 7: Indoor 
environment traversing 

carpet into a corner. 

Scenario 8: Indoor 
environment stationary 

obstacle traversing 
lino. 

Scenario 9: Outdoor 
environment with 

Stationary and moving 
obstacle traversing 

concrete. 

Scenario 10: Outdoor 
environment moving 
obstacle traversing 
changing surface 

(Astroturf to 
Concrete). 

For evaluation purposes and to test the ability of a deep network to generalize, we 

trained the current state of the art semantic segmentation network DeepLabv3+ [333] using 

the CamVid dataset [239]. The CamVid database was collected using a 3CCD Panasonic 

HVX200 digital camera mounted to the dashboard on the passenger side of a vehicle driven 

for two hours around Cambridge. The footage used to construct the dataset came from 22 min 

and 14 sec of video footage. Data was collected at 30 fps with a resolution of 960 x 720 pixel. 

The dataset provides ground truth labels that associate each pixel with one of 32 semantic 

classes. From the 22 min and 14 sec of video footage, 10 min of high-quality 30Hz footage 

was chosen and semantically labelled images at 1Hz and in part, 15Hz [239]. 

We used a pre-trained ResNet-18 [148] to initialize the weights of Deeplab v3+. 

ResNet is a reliable CNN commonly used for image recognition tasks. Furthermore, we 

reduced the number of classes in the CamVid dataset from 32 classes into two super classes. 

For example, Free Space is a combination of Sidewalk, Road, Road Shoulder, Drivable Lane 

TABLE 10: SCENARIO DETAILS DEPICTED IN FIGURE 41 
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Markings and Non-Drivable Lane Markings. The remaining classes of the CamVid dataset 

were grouped into the superclass ‘Not Free Space. 

Testing of the proposed self-evolving FSD framework and DeepLabV3+ framework 

was done using a subset of the LboroLdn AV dataset. The video and ultrasound data used for 

evaluating the different frameworks were not part of the video data used to train the proposed 

framework. Testing data was chosen in this manner to demonstrate the generalizability of both 

frameworks to new and unseen scenarios. This subset of the dataset indicates multiple different 

surface types – indoor, outdoor, lino, concrete paving slabs, tarmac, AstroTurf, tiles, and low 

pile carpet. 

4.5.2 Performance 

There are many networks suitable for semantic segmentation of free space [309]–[312], 

[318]–[320]. While all these networks function quite well when tested on data, they are 

familiar with, their ability to generalize semantic scene representations for FSD – that they 

have never encountered before – is the real litmus test of their ability. Although there are 

several approaches to FSD – OGMap’s [302], [334], fused LiDAR and Image data [60], [335] 

stereo/monovision [336], [337] – few if any have used fused ultrasound data and image data 

to facilitate this process. 

Typically, in FSD tasks, the accuracy, the bfScore, and the weighted intersect over 

union (IoU) suffice as metrics used to measure performance. However, when scrutinizing FSD 

frameworks, two body of opinion regarding metrics should be kept in mind; how well the 

classifier works on the test data, or dataset metrics; and how well the classifier works on the 

individual class, or class metrics. To that end, we report on the performance of the proposed 

self-evolving FSD framework and the current state of the art – DeepLabV3+. 

The dataset metrics describe metrics that rank the response of the proposed framework 

to the test data. They aggregate the response of the algorithm and provide detail as to how well 

the framework performs over different scenarios. The class metrics indicate the response of 

the framework to specific classes. Thus, the class metrics tell how well specific class are 

identified by the framework. While dataset and class metrics tell different things, they both 

utilize similar techniques.  

For example, the accuracy indicates the percentage of correctly identified pixels for 

each class. Defined as the ratio of correctly classified pixels to the total number of pixels in 

that class, according to the ground truth. For the aggregate dataset, the mean accuracy is the 
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average accuracy of all classes in all images. Consequently, class accuracy is typically used in 

conjunction with IoU for a complete evaluation of segmentation results. 

The IoU is the most commonly used metric in semantic segmentation and object 

detection. For each class, IoU is the ratio of correctly classified pixels to the total number of 

ground truth and predicted pixels in that class. For the entire data set, the mean IoU is the 

average IoU score of all classes in all images. Concurrently we can weight the IoU by the 

number of pixels in that class if we want a statistical method that penalizes false positives. 

This metric is used if images have disproportionally sized classes, to reduce the impact of 

errors in the small classes on the aggregate quality score.  

TABLE 11: SEMANTIC SEGMENTATION NETWORKS MEAN IOU 

Method Ref Year mean IoU 

Deep Layer Cascade [338] 2017 82.7 

ResNet-DUC-HDC (TuSimple) [322] 2018 83.1 

GCN (Large Kernel Matters) [339] 2017 83.6 

RefineNet [340] 2016 84.2 

ResNet-38 [341] 2019 84.9 

Pyramid Scene Parsing Network [321] 2017 85.4 

IDW-CNN [342] 2017 86.3 

Stacked Deconvolutional Network [343] 2019 86.6 

Deep Dual Learning [344] 2017 86.8 

DeepLabv3 [345] 2017 85.9 

DeepLabv3+ [333] 2018 89.0 

Like accuracy, the bfScore or boundary F1 Score considers both the precision and the 

recall of the classifier to determine the advantage of one system over another. Typically, the 

BF score is a metric that tends to correlate better with human qualitative assessment than the 

IoU. For each class, the mean bfScore is the average BF score of that class overall images. For 

the aggregate data set, the mean bfScore is the average BF score of all classes in all images. 

To evaluate the performance of the proposed framework, we compare metrics and 

visually appraise the results of the proposed framework against those of DeepLabV3+ [333]. 

DeepLabV3+ was chosen because of the high mean IoU. While the bfScore would have been 

a better correlation to human qualitative assessment, it is not as readily available as the mean 

IoU. Table 11 lists alternative networks capable of classifying free space that was deemed 

incongruous because the mean IoU was less than that of DeepLabv3+. 
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A. Online Active ML Performance 

Table 12 reports on the global average, mean accuracy, mean IoU, weighted IoU and 

mean bfScore for the proposed Online Active ML framework. These metrics report on the 

response of the Online Active ML Framework to all the test data. In this case, the proposed 

framework performs quite well for most of the metrics and reasonably well for the mean 

bfScore. 

TABLE 12: DATASET METRICS FOR THE ONLINE ACTIVE ML FRAMEWORK 

 global average mean accuracy mean IoU weighted IoU mean bfScore 

Test Data 0.9097 0.8517 0.7682 0.8369 0.5858 

Table 13 reports on the accuracy, IoU, and mean bfScore for the proposed self-

evolving FSD framework. These metrics report on the response of the individual classes in the 

dataset. Interestingly, when considering the individual class metrics, the proposed self-

evolving FSD framework performs better on the “not free space” class when compared to the 

“free space” class. 

TABLE 13: CLASS METRICS FOR THE PROPOSED ONLINE ACTIVE ML FRAMEWORK 

 accuracy IoU mean bfScore 

Free Space 0.7461 0.6446 0.4935 

Not Free Space 0.9571 0.8917 0.6779 

Figure 42 shows the confusion matrix for the proposed self-evolving FSD framework. 

On the Y-axis are the Output Class, and on the X-axis are the Target Class. The diagonal cells, 

dividing either side of the matrix, indicate true positives that are correctly classified. The off-

diagonal cells indicate false positives that are incorrectly classified.  

As the metrics reported in Table 12 and 13 show, the confusion matrix indicates 

something similar – the proposed self-evolving FSD framework performs better on the “not 

free space” class when compared to the “free space” class. Overall, the metrics in Table 12, 

Table 13 and the confusion matrix in Figure 42 shows that online active ML generalizes 

exceptionally well to environments never before encountered.  

Furthermore, the quantity of data required to get the network to the point where it can 

classify traversable surfaces with a high degree of accuracy is relatively little. When compared 

to a Neural Network and the time it takes to learn new data, the practicality of using time 

consumeing ML methods become abundenty clear.  
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Figure 42: Confusion Matrix for the online active ML framework. The diagonal cells indicate true positives correctly classified. 
The off-diagonal cells indicate false positives that are incorrectly classified 

B. DeepLabV3+ Performance 

Table 13 reports on the global average, mean accuracy, mean IoU, weighted IoU and 

mean bfScore for the DeepLabV3+ framework. These metrics report on the response of 

DeepLabV3+ to all the test data. It should be noted that in all cases, the dataset metrics for 

DeepLabV3+ were lagging behind those of the proposed self-evolving FSD framework. 

TABLE 14: DATASET METRICS FOR DEEPLABV3+ 

 global average mean accuracy mean IoU weighted IoU mean bfScore 

Test Data 0.8450 0.6997 0.6101 0.7294 0.4421 

Table 14 reports on the accuracy, IoU, and mean bfScore for the DeepLabV3+ 

framework. These metrics report on the response of the DeepLabV3+ to the individual classes 

in the dataset. Similar to the proposed self-evolving FSD framework, DeepLabV3+ reports a 

higher error on the “free space” class than the “not free space” class. 

TABLE 15: CLASS METRICS DEEPLABV3+ 

 accuracy IoU mean bfScore 

Free Space 0.4309 0.3905 0.2973 

Not Free Space 0.9686 0.8296 0.5869 
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Figure 43 shows the confusion matrix for the DeepLabV3+. As before the Y-axis are 

the Output Class, and on the X-axis are the Target Class. The diagonal cells, dividing either 

side of the matrix, indicate true positives that are correctly classified. The off-diagonal cells 

indicate false positives that are incorrectly classified. When comparing Table 12 to Table 14, 

Table 13 to Table 15 and Figure 42 to Figure 43, it is clear that the proposed self-evolving 

FSD model out preforms DeepLabV3+. While DeepLabV3+ performs relatively well, it lags 

behind the online active ML method for generalizing. Furthermore, the quantity required to 

train DeepLabV3+ is many times greater than the data to get the proposed self-evolving FSD 

framework up and running. 

 
Figure 43: Confusion Matrix for DeepLabV3+ framework. The diagonal cells indicate true positives correctly classified. The off-
diagonal cells indicate false positives that are incorrectly classified. 

4.5.3 Visual Results 

The purpose of the proposed algorithm is to assist an AV with FSD. We benchmarked 

the proposed self-evolving framework against DeepLabV3+ and presented some of the 

findings in Figure 44. Table 16 reports on the scenario’s depicted in Figure 44. The results 

presented in Figure 44 Scenario 1 (a), Scenario 2 (a), Scenario 3 (a) and Scenario 4 (a), indicate 
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that the proposed Online Active ML framework out preformed its counterpart DeepLabV3+ 

when presented with scenarios never encountered before. 

In consonance with the results in Figure 44 Scenario 1 (a), Figure 44 Scenario 2 (a), 

Figure 44 Scenario 3 (a) and Figure 44 Scenario 4 (a), the proposed online active ML algorithm 

for Self-evolution of FSD returns a superior result to detecting free space to DeepLabv3+. 

While Deeplab v3+ is still capable of identifying free space, there are several 

misclassifications – as can be seen in Figure 44 Scenario 1 (b), Figure 44 Scenario 2 (b), Figure 

44 Scenario 3 (b) and Figure 44 Scenario 4 (b). For example, Figure 44 Scenario 1 (a) the area 

immediately to the front of the autonomous platform is correctly classified, whereas in Figure 

44 Scenario 1 (b) DeepLabv3+ misclassifies the area as occupied space. This corresponds to 

a situation where DeepLabv3+ has generalized relatively well from the data it was trained on 

to the unfamiliar data used to test both frameworks. 

Yet again, in Figure 44 Scenario 2 (b), DeepLabv3+ fails to detect a large portion of 

free space to the front of the platform. Whereas in Figure 44 Scenario 2 (a), the proposed 

framework outperforms and accurately classifies the area to the front of the platform. The 

proposed framework performs poorly on the concrete paving stones either side of the 

autonomous platform handlebars, as opposed to DeepLabv3+, which classifies the paving 

stones correctly. Moreover, DeepLabv3+ mistakenly classify the sky and part of the 

autonomous platform as free space. 

Almost a repeat of the results found in Figure 44 Scenario 2 (b), Figure 44 Scenario 3 

(b) miss classifies the area to the front and correctly classifies the area either side of the 

platform correctly. Opposingly Figure 44 Scenario 3 (a) out preforms DeepLabv3+ in almost 

all the free space in the image except for a small area to the right front of the autonomous 

platform on the AstroTurf. In Figure 44 Scenario 4 (a), we have a similar situation where the 

proposed framework classifies almost all the free space in the image correctly. Conversely, 

Figure 44 Scenario 4 (b) classifies the area to the front and side of the platform, incorrectly. 

TABLE 16: SCENARIO DETAILS DEPICTED IN FIGURE 44 

 Images 

Row 1 Scenario 1: Indoor environment with stationary obstacle traversing lino. 

Row 2 Scenario 2: Outdoor environment traversing changing surface (Concrete to Tarmac). 

Row 3 Scenario 3: Outdoor environment traversing changing surface (Concrete/Astroturf). 

Row 4 Scenario 4: Indoor environment with stationary obstacle traversing tiled surface. 
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ONLINE ACTIVE FSD (A) DEEPLABV3+ FSD (B) 

Figure 44: Visual results of the Semi-supervised and Fusion approaches to FSD and DeepLabv3+ FSD. From the top-down. 
Scenario 1, Scenario 2, Scenario 3 and Scenario 4. Table 16 details the scenarios depicted in Figure 44. Images in the first column 
indicate the output of the proposed self-evolving FSD framework. Images in the second column indicate the output of 
DeepLabV3+.  
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Visually the proposed online active Learning Algorithm for Self-evolution of FSD 

returns a superior result to DeepLabv3+. Although it could be argued that DeepLabv3+ was 

not trained on the same dataset as the proposed framework (1500-pixel patches), it would be 

difficult to see how such a small data would impact the overall performance [117]. Moreover, 

one of the desired outcomes of DL is to produce a network that can generalize from scene to 

scene. This clearly is not happening here as DeepLabv3+ misclassifies so much of the test data. 

Further arguments regarding the underperformance by DeepLabv3+ rotate around the 

wide-angled lenses used to capture the test data. Although a valid argument, it can be 

disregarded since DeepLabv3+ performs poorly on all the test at the centre of the image. As is 

the case with all images captured using a wide-angle lens, the area at the centre of the image 

is least distorted and is almost identical to data captured using a standard prime lens. Since the 

CamVid dataset was captured using a 3CCD Panasonic HVX200 digital camera fitted with a 

standard prime lens, DeepLabv3+ should have been able to generalize from its training data 

and classify pixels in the centre of our test data with relative ease.  

It should be noted that the proposed framework uses online active ML to self-learn 

free space. The fundamental principle behind the proposed framework is the querying of 

optical data as it comes available against the robust sensor stream – ultrasound. In effect, the 

proposed framework will classify on a case by case basis and improve its accuracy over time. 

4.6 Summary 

In this chapter, we report on the method of FSD using sensor data fusion derived from 

data gathered by an ultrasonic sensor array and luminance data from a wide-angle imaging 

sensor. The data from the ultrasound comes in the form of 2D ranges and can be used to 

improve FSD using a semi-supervised form of ML called online active learning. 

The purpose of the proposed algorithm is to assist the AV with perception tasks. This 

subsection presents the results found during this research. In this section, we compare the 

effectiveness of image-based FSD to the ultrasound-based FSD against the proposed online 

active Learning Algorithm for the Self-evolution of FSD. Furthermore, we compare one of the 

most prominent methods of FSD, DeepLabv3+ against the proposed framework. Existing 

techniques for FSD are sensitive to lighting conditions and have difficulties generalising – 

because of the infinitely different road surfaces they encounter. The difficulties in 

generalization is a consequence of limited data and diversity. 
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This research compares four different methods for identifying free space. In 

consonance with the results, the proposed framework takes a more conservative approach in 

detecting free space as it utilizes both online, active ML & sensor data fusion. For example, in 

Figure 44 Scenario 1 (a) and (b), the same obstacles are detected as occupied space. However, 

in Figure 44 Scenario 1 (b), DeepLabv3+ incorrectly classifies the space between the 

autonomous platform and the boxes as occupied space. This corresponds to a situation where 

the image-based FSD is performing poorly due to high saturation, and DeepLabv3+ cannot 

generalize from the data used to train it. In Scenario 1 of both Figures 40 and 41, it is only the 

proposed framework that can identify the boxes as obstacles and the area in front of the 

autonomous platform as free space. 

This research addresses the problem of FSD utilizing online and active ML, and fusion 

of ultrasound and monocular image data. The proposed framework can be broken into three 

components. The first component is a supervised ML classifier. The second component is a 

semi-supervised ML classifier that utilizes a robust sensor stream – ultrasound data – to query 

information from image data to classify free space. The final component fuses the results of 

the semi-supervised ML classifier with the ultrasound sensor data to improve FSD. 
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Chapter 5 A Multimodal Fisher Vector Network for 

Human Activity Recognition  

5.1 Introduction 

Long-range optical depth scanners such as LiDAR sensors are becoming increasingly 

commonplace in industrial systems. These optical sensors often complement traditional 

cameras (RGB-imaging sensors) but perceive the environment more robustly. Detecting and 

recognizing objects within an image is an essential element of many emerging industrial 

control systems. CNN is a type of ML. They are mostly used in processing RGB image data 

for tasks, such as object detection and recognition. Most recently, researchers have been 

exploring ways of applying CNNs to 3D optical data. Although these methods are encouraging, 

they are typically based on a single modality and cannot draw on information from other 

complementing sensor streams, like a camera. Multimodal sensing merges data from different 

sensor streams to improve the accuracy of recognition tasks. 

This chapter investigates a novel CNN architecture to leverage the benefits of sensing 

redundancy for HAR. A Multimodal RGB and-3D modified Fisher Vector Network (3D-MfV 

Net) is presented to process RGB image data and 3D LiDAR data collectively. It is 

demonstrated for a use-case in HAR on LiDAR streams. Evaluation of a custom captured 

multimodal dataset demonstrates that the model outputs are remarkably accurate in object 

detection of RGB images, 3D segmentation, and human activity classification. Furthermore, 

the proposed method provides results that compare favourably with the state-of-the-art ML 
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algorithms such as PointNet and its variations [1], [2], [346]. HAR is a combination of research 

into computer vision, ML and human-computer interaction [269]. Achieved using optical-

based sensors [347], radio-based sensors [348], or fuse data captured from different sensor 

types [269], HAR is applied to different scenarios ranging from assisted living (AL) [279] to 

driver policy for AV [116], [349]. 

HAR is realized by classifying the activity of a person, before getting a machine to 

anticipate the activity the subject is performing. For successful advancements in HAR, 

machines need to understand and make use of multiple signals [350]. Naturally, where more 

diverse sensor types are used, the focus of research shifts from traditional single modality into 

multidimensional feature learning networks. The success of CNN’s ability to classify images 

can, in part, be attributed to their architecture [351]. Coincidently, it is the architecture and the 

way they process image data that also prevents their application to 3-Dimensional feature 

learning. 

The purpose of this current research is to segment and classify Point Cloud data using 

a ROI extracted from an RGB image. In this chapter, we propose a MfV Net. The proposed 

framework uses a pre-trained CNN (ResNet–50) [148], [351] and a region proposal network 

(RPN) as an Object Detector [352]. The purpose of the Object Detector is to identify an ROI 

in the RGB image, such as a person performing an activity. The corresponding ROI is 

translated and aligned to Point Cloud data before being segmented and classified using a 3D 

Fisher Vector representation, which is derived from a Gaussian Mixture Model (GMM) [353]. 

This approach extends research on the 3DmFV Net algorithm proposed in [353]. 

Specifically, we developed a technique where a detected ROI is projected onto LiDAR data, 

followed by a Point Cloud classification of an activity performed by a human. Figure 45 

depicts the MfV- Net pipeline. In line with [26], there are five core technical challenges for 

this research. They can be described as; representation which is concerned with the difference 

between data types and how they relate to each other; translation which is the mechanism of 

moving data from one plane to another; alignment which indicates the relationship between 

two different sensor streams and is typically denoted by the proximity of each sensor to each 

other; Fusion which denotes the joining of sensor data to improve the accuracy of a predictive 

algorithm; and co-learning which indicates how knowledge is recognized from one modality 

for use with another. 
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Figure 45: Depicts the MfV Net HAR pipeline. Given RGB data, we first detect a subject and generate an ROI. Each RGB ROI 
is translated and aligned onto the 3D point cloud. The corresponding 3D ROI is then passed onto the classifier before deciding 
what activity is being performed.  

The main contribution of this work is a new, accurate, and reliable method of HAR, 

which leverages multiple sensing modalities. Additional contributions that are a result of our 

methodology include Detection of an ROI, the translation and geometric alignment of multiple 

modalities such as RGB, RGB-D and Point Cloud data, and the Segmenting of 3D objects. It 

should be noted that 3D data and Point Cloud data are used interchangeably through the course 

of this chapter. 

The rest of this chapter is organized as follows: Section 5.2 details some of the 

problems with HAR and the motivation and context; Section 5.3 reports on sensor data 

representations used in this chapter, followed by the proposed framework in Section 5.4. 

Section 5.5 details the results and discussion before moving onto the summary in Section 5.6. 

5.2 Problem Definition 

HAR is the study of extracting human silhouettes, tracking them in the temporal 

domain, and classifying activities based on the patterns analysed [354]. This is a very advanced 

area of research with some significant performance, albeit on RGB images/videos or wearable 

sensors. HAR is an essential element in many industrial applications, such as assistive robots 

[355], driverless cars [356], and sports analytics [357]. 

HAR is proposed in this research to decrease road accidents by recognizing pedestrian 

activities. In [263] and [264], authors provide a new application of HAR for a pedestrian 
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recognition system that matches the predicted intention with that of a driver's direction. While 

most of the HAR activities have been focused on RGB images, most of the emerging assistive 

systems are equipped with depth sensors such as LiDAR. Such sensors often produce 3D Point 

Clouds. Most of the driverless vehicle prototypes are attached with LiDAR sensors. The 

advantage of LiDAR is that it can complement other sensors. For example, during the night-

time, while cameras would not produce accurate results, LiDAR would be able to sense with 

a higher degree of accuracy. 

There is very little research to develop detection and recognition tasks on 3D Point 

Cloud data. Annotating and labelling 3D Point Cloud data is a challenging and time-

consuming task when compared to labelling RGB images. This makes it difficult to utilize 

state-of-the-art techniques such as CNNs for Supervised Learning tasks. To exacerbate the 

issue, there are a limited number of multimodal datasets available, which can be used to 

develop recognition algorithms. For example, among the available datasets for HAR, only a 

handful contain both LiDAR data and RGB images/videos [279] [240] [242]. 

5.2.1 3D Point Cloud Machine Learning 

Point Cloud data is not a natural input to CNN. CNN's were designed to process RGB 

images or suitable data format, therefore adapting them to work on 3D data is not a 

straightforward extension. Depending on the sensor FoV Point Clouds are unstructured, 

unordered, prone to missing data, and are affected by noise and rotations[353]. 

Early attempts at training a Network using Point Cloud data, required transforming 

the 3D data to a series of RGB images at multiple views. These networks learned the depth 

map of the scene, rather than the 3D objects [358]. Several adaptions of this process convert 

Point Cloud data to a bird’s eye view before using CNN to make a classification [359]. 

Although some success was attained, information can be lost in the transformation, and the 

accuracy of the network suffered [360], [361]. 

A DL architecture called PointNet was proposed in [1], [2] to process Point Cloud 

data. During training, PointNet takes unordered data points as a set of functions and maps a 

point set onto a vector. After training PointNet has learned the vector representation of the 

different classes. When making a classification, the vector representation is checked against 

the patterns it identified in the dataset during training, While retaining all the data during 

classification and being suitable for object classification, the network lacks an understanding 

of the relationships between points. The advantage of PointNet is an end-to-end network that 
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can process 3D data without translating it to a complex representation other than the simple 

vector [1]. Depicted in Figure 46, PointNet is good at making a classification, it is void of a 

mechanism to facilitate detection and localization. Moreover, the process is limited by 

available memory, considering the high computational cost of large Point Clouds. 

 
Figure 46: Shows the PointNet Architecture. The classification network takes n points as input, applies input and feature 
transformations, and then aggregates point features by max pooling. The output is classification scores for k classes. The 
segmentation network is an extension to the classification net to facilitate the segmentation the components that construct the 
object its classifying [1]. 

Recently, research on rasterizing Point Cloud data into a 3D voxel grid [362], where 

authors proposed the voxelization of a Point Cloud data for region proposal object detection. 

A voxel – synonymous with a pixel in RGB images – is a digital representation of a unit of 

volume. VoxelNet used a feature learning network to partition a volume occupied by 3D data 

into voxels. Points within each voxel are than translated into vector representation of the 3D 

object. The convolutional middle layers of VoxelNet, aggregate the Point Cloud representation 

before an RPN generates a 3D bounding box around the object. While VoxelNet returns 

encouraging results, this approach suffers from a trade-off between its computational cost and 

approximation accuracy, as the size of voxels dictates accuracy making it useless for tasks that 

require granular analysis [362]. 

A different approach proposed in [353] uses a hybrid that combines a discrete grid 

structure with a modified Fisher Vector (FV). Typically, the FV represents the rate of curvature 

of the normal distribution. If a probability density function is used to model the rate of change, 

the gradient of the likelihood with respect to the elements that represent the image can be 

computed. [353] proposed a classification pipeline constructed of two main components. The 

first component converts the 3D data to a modified FV representation, and the second process 

it using a CNN. Counter to conventional wisdom – where a feature learning network uses raw 

data to derive a pattern – a vector that represents the image is learned. 
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5.2.2 Motivation and Context 

Having a system that can recognize human activity without the need for individual 

sensors dramatically improves reliability and increase the chances of this research becoming 

ubiquitous in AV infrastructure. For this to occur the sensors used in identifying HAR need to 

be the same as the ones found in AV’s. Furthermore, if one wishes to develop an algorithm for 

what can be regarded as a critical cognitive skill, we need to do so with reliability as one of 

our primary objectives. To that end, the proposed framework is only made possible through 

the availability of the multimodal  LboroLdn HAR dataset [279].  

Multimodal ML has found a home in many disciplines: computational linguistics to 

assisted living and AV. Possibly one of the earliest applications of Multimodal ML was AVSR 

in [363]. Motivated by the association between vision and sound, researchers in [363] studied 

the McGurk effect. The McGurk effect demonstrates the relationship between hearing, vision 

and speech perception. For example, if a person is getting inadequate sound data but is 

receiving good quality visual data, they can, on occasion, decipher a third sound or a 

combination of the visual and audio signals. McGurk [363] demonstrated this by playing the 

sound “ba–ba” while showing a person saying “ma–ma”. The subject being tested than 

perceived a third “da–da”. Originally AVSR was intended to improve the speech recognition 

ability of Hidden Markov Models [364]. However, the current popularity in DL has shown 

real advantages with low signal to noise ratio, where visual information is used to identify 

noisy signals correctly [365]. 

One of the most prolific applications of Multimodal ML is in the area of ambient 

assisted living centres, hospitals and rehabilitation centres – especially elderly care units [366]. 

In this area of research, the ML algorithm is designed to determine what situations require 

urgent medical assistance using multiple signals to determine a change in health. The intention 

is to differentiate between typical day-to-day activities and a drift away from homeostasis 

[367]. In this case, the event is identified using Multimodal ML by combining multiple 

biometrics to deduce what has just occurred. 

Research work that is closely related to Multimodal ML for HAR is recognizing 

pedestrian activities. Applying this to AV could decrease road accidents. [263] and [264] 

provide an interesting application of HAR for a pedestrian recognition system that matches the 

pedestrians predicted intention with the driver's direction. Depending on the actions, the 

vehicle brake is initiated to avoid a collision. Action prediction is ‘before the fact event’. It 

supersedes recognition. Referred to as the HAP, where ML algorithms recognize a class from 
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an incomplete or changing action [265]–[267]. This is quite different from action recognition, 

where ML algorithms expect to see a set of action dynamics. 

5.3 Point Cloud Representation Learning for Activity Recognition 

This section presents the proposed method for Multimodal HAR, which is based upon 

an advanced CNN architecture. As illustrated in Figure 47, the proposed framework utilizes a 

robust Object Detector, Faster Region Convolutional Neural Network (Faster-R-CNN), to 

identify an ROI and a 3D classifier – 3DmFV Net – to identify the activity. It is understood 

that the framework can perform multi subjects activity recognition. However, it has not been 

tested for this purpose. The corresponding ROI is translated and aligned to the Point Cloud 

before the ROI on the 3D-LiDAR data is classified into the activity being performed.  

 
Figure 47: The proposed HAR architecture. They are depicting all the elements in the Multimodal Fisher Vector Network. We 
first leverage the power of a CNN to detector objects and propose an ROI. The geometrically aligned and translated Point Cloud 
data allows us to identify the corresponding 3D ROI in the 3D sample. This segmented ROI is converted into a modified FV 
representation before being passed onto the classification network. The resultant class is overlaid on the object detector image 
proposed by the object detector network. 

5.3.1 Object Detection Network 

The principal component of the proposed architecture is an Object Detector that 

extracts an ROI from an input RGB image. An Object Detector is a classifier that also locates 

the region where the target class resides. The ResNet [148] was modified by training an RPN 

to extract ROI’s from images before classifying the data contained in that region. This process 

is commonly referred to as a Faster-R-CNN [352]. The Faster-R-CNN gets its name by 
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performing the convolution operation once per region before generating the feature map for 

that data. The Faster-R-CNN Object Detector is an extension of the R-CNN and the Fast-R-

CNN. The main difference between the three is the use of an RPN by a Faster-R-CNN, versus 

the use of a selective search for generating ROI by the Fast-R-CNN and the R-CNN. And the 

use of a dynamic selective search by the Fast-R-CNN versus a fixed selective search by the R-

CNN [352], [368]. The base classification network modified for Object Detector was ResNet–

50 trained on the ImageNet dataset [369]. As is the case with most supervised ML methods 

are sensitive to lighting conditions and have difficulties generalising – because of the infinitely 

different classes they encounter. To address this issue, we finetuned ResNet–50 using a subset 

of RGB images only from the LboroLdnHAR [279] dataset. 

The detector was validated using an IoU between the ground truth bounding boxes 

and the predicted ROI. IoU detects the difference between the annotated bounding boxes of 

the LboroLdnHAR dataset RGB images and the proposed ROI. Using pairs of anchors with 

sizes {30,19;60,38;120,76}, the ROI was labelled positive (object of interest present) when 

accuracy was higher than 0.65, and negative (object of interest, not present) when less than 

0.35. In this case, the accuracy that the classifier returns for that region behave as a threshold 

for the detector. It determines whether the features being observed in that region can be 

classified as an object of interest or not. During training, the shortest side of all images scaled 

to 246 pixels. Trained using stochastic gradient descent with a learning rate of 0.0001 and a 

momentum of 0.9, the R-CNN network used a patch size of 16 × 16 pixels. 

5.3.2 Geometric Alignment of Sensor Data 

To facilitate the classification of Point Cloud data, the ROI identified by the object 

detector was translated and aligned to the corresponding area in the Point Cloud sample. This 

process of geometric alignment requires knowledge about the proximity, orientation, and 

modality of the sensor types. Attained, through the alignment of Kinect sensor data to LiDAR 

sensor data, before transforming the resulting point cloud sample (Kinect and LiDAR Data 

combined) to the camera data. This two-step process facilitates the segmentation of sample 

data and the labelling of class activities. A most useful tool when building a dataset, it should 

be noted that translation does not occur between the Kinect and LiDAR, but rather the point 

cloud sample and the data captured by the camera. While possible to use the inbuilt camera in 

the Kinect sensor, it could not capture 360° images and therefore the valuable context 

information we desire. 
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Figure 48: Illustrates the plan view of the setup showing the position of the Kinect and LiDAR sensors relative to the autonomous
platform. 

  

 
Figure 49: Illustrates the elevation view of the setup showing the position of the Kinect and LiDAR sensors relative to the
autonomous platform. 

This process can be explained if we consider a point in space represented by 3D 

coordinate. In the first stage, we shift the point’s origin from one location to another using a 

scalar (Kinect data and LiDAR data alignment). Note, at this point; we are only concerned 

with the RGB-D and Point Cloud data. Therefore, the plan and elevated view in Figure 48 and 

Figure 49 only show the location of the Kinect and LiDAR sensor. For this example, consider 

an object ? 4.76 m (�	 in front of the AV, 2.75 m (�	 to the right, and 0.9 m (R	 below the 

horizontal axis of the Kinect sensor. If we know that the Kinect sensor is offset – 0.45 m on 

the �∆�	 axis, 0 m on the �∆�	 axis, and 0.5 on the �∆R	 axis – it is merely a matter of adding 

the scaler to corresponding coordinates for alignment. 
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 �� = ∆� + � (Equation 17) 

 

 �� = ∆� + � (Equation 18) 

 

 T� = ∆R + R (Equation 19) 

 

 
Figure 50: Illustrates the plan view of the setup showing the position of the RGB and LiDAR sensors relative to the LboroLdn 
autonomous testbed.  

 

 
Figure 51: Illustrates the elevated view of the setup showing the position of the RGB and LiDAR sensors relative to the LboroLdn 
autonomous testbed. 
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In the second stage of the process, each corresponding point cloud sample of aligned  

LiDAR and Kinect data is transformed to match each pixel output by the RGB sensor. Figure 

50 illustrates the plan view of the sensor setup, while Figure 51 illustrates the elevated view 

of the sensor setup. At this stage, we are only concerned with the translation of the point cloud 

sample to the camera data. This process is similar to the first stage but somewhat more complex, 

as the data types are not comparable. 

For this derivation, consider an object ? at a distance (E	 of 5.6 m from the LiDAR 

sensor. In this case, the object (O) is identified at an azimuth angle (B’) of 3° and a zenith 

angle of 99°. The Vertical ��	 distance between the LiDAR and the RGB sensor is 27 cm, and 

the RGB sensor is positioned �GH	 122 cm above the ground. Considering the distance E 

between the object ? and the RGB sensor, we can describe @ – the RGB azimuth angle. 

 @ = sin7� Msin�W	 × �
� N ⇒ sin7� Msin�99°	 × 0.27

5.62 N = 2.7° (Equation 20) 

In this case, because the RGB and LiDAR sensors are on the same longitudinal axis. 

The RGB zenith angle � between the object ? and the RGB sensor can be described as: 

 � = 180 − W − @ ⇒ 180 − 99 − 2.72 = 78.2°  (Equation 21) 

Furthermore, the distance E between object ? and the RGB sensor described as: 

 c = ]^_�`	×a
]^_�b	  ⇒  ]^_�cd.�d	×e.f�

]^_�gg°	 = 5.5�  (Equation 22) 

The purpose of this process is to translate and align one data stream to another. It is 

assumed that the longitudinal axis of the three sensors are aligned; however, an offset can be 

accounted for, if necessary. The effectiveness of translation and alignment procedures were 

visually compared. Figure 52 Scenario 1 (a) shows a subject is carrying a box overlaid with 

the translated and aligned LiDAR data and the ROI identified by the 2D image detector. Figure 

52 Scenario 1 (b) shows the Point Cloud data and the ROI identified by the 2D image detector 

– denoted by a blue cuboid. Inevitably, the 3D ROI includes some unwanted artefacts. For 

example, in the foreground of Figure 52 Scenario 1 (b), there are some unwanted surface 

features included in the sample. Towards the rear of the 3D sample, an unwanted portion of 

the wall is included in the segmented point cloud data. With the proposed framework, it is 

expected that there is going to be some unwanted artefacts processed by the network. While it 
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is possible to filter the data using a moving average, some artefacts are going to remain. 

However, through accurate geometric alignment, the artefacts can be further minimised. 

S
C

E
N

A
R

IO
 1

 

  

 LIDAR DATA TRANSLATED & ALIGNED TO THE RGB 

IMAGE SHOWING THE ROI (A) 
POINT CLOUD DATA WITH 3D ROI IDENTIFIED BY THE 2D 

IMAGE DETECTOR (B) 

Figure 52: (a): A Scenario showing the subject carrying a box. Overlay with the 2D ROI, the translated and aligned Point Cloud 
data. (b) Shows the Point Cloud data with corresponding 3D ROI overlay.  

5.3.3 3DmFV Classification Network 

There are distinct differences between 2D RGB data and 3D data. 2D RGB data is 

structured and organized, whereas 3D data is unstructured, unorganized, prone to noise, and 

missing points. Unlike 2D RGB data, 3D data does not contain valuable descriptors, like HOG 

or HSV, that are frequently used by feature learning networks. While the positional 

relationship between coordinates is a descriptor present in 3D data, it is different from the 

positional relationship in 2D images. For example, a CNN will assume some sense of locality, 

where pixels in the image are related, and therefore have similar colour, lighting and texture. 

In point cloud data, they are near to each other and do not share any relationship in colour, 

lighting and texture. By its nature, 3D data cannot provide the structure and organization that 

CNN requires to make a prediction. Void of valuable descriptors, structure, and order; 3D data 

needs to be modified before a CNN can classify it. The proposed method for classifying Point 

Cloud data consists of two main modules. The first module converts 3D data to the modified 

FV representation. The second module processes the modified FV representation in CNN 

before making a classification. An in-depth description of the 3DmFV network can be found 

in [353]. 
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A. Fisher Vectors 

Intraclass variability describes variations in appearance between two views of the 

same class or variations in appearance between two instances of the same class. In HAR, for 

example, when viewing a person from the front, it is difficult to determine if they are walking 

with a phone in hand or no phone at all. Moreover, variations in appearance between two 

instances can occur, for example, during different phases of an individual’s gait. 

 
Figure 53: Shows three 2D points superimposed on a 2D Gaussian on the left of the image. In the centre of the image is the FV, 
and on the fight is the FV representation for the three points. The vector in the centre of the image indicates the rate of curvature 
for the data. 

FVs are a way of dealing with intraclass variability and determine the likelihood of 

getting specific data given an underlying theory. A 2D representation of the FV is shown in 

Figure 53. Formally, it is the expected value of the observed information. Under ideal 

circumstances, this can best be described as having a probability distribution with a very sharp 

peak. Conversely, when the distribution curve is very broad, there is a high likelihood over a 

large range of points. 

By using a GMM, the rate of curvature can be quantified by looking at the probable 

distribution of the different points. Often referred to as the curvature vector, it describes how 

curved the function is around the maximum. In simpler terms, the more significant the FV, the 

more curved the distribution is, meaning, the more constrained the data is for that scenario. 

Overlaying spherical Gaussians on a coarse grid provides structure, size, and the 

foundation for a representation of the image. By computing each point derivative, with respect 

to the Gaussian parameters, the results can be aggregated using three symmetric functions – 
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Maximum, Minimum, and Summation. The FV representation is the aggregated values. It has 

a constant size making it invariant to permutations for a different number of points. For 

multiple points, we can superimpose several Gaussian onto the grid resulting in a statistically 

unique fingerprint of the 3D data [370]. Figure 54 (a) depicts the spherical Gaussians 

superimposed on the Point Cloud data, and Figure 54 (b) shows the modified FV representation. 

It should be noted that the 3DmFV representation in Figure 54 (b) is for visualization purposes 

only, concretely it is a 4-Dimensional array that is fed into the CNN. 

 

(A) SPHERICAL GAUSSIAN SUPERIMPOSED ON POINT CLOUD DATA (B) FISHER VECTOR REPRESENTATION 

Figure 54: (a) Shows the spherical Gaussians superimposed on the Point Cloud data. (b) Shows the modified FV representation 
of the GMM for the Point Cloud data 

B. Classification of Fisher Vector Representation 

The main parts of the 3DmFV network used to classify the representations comprise 

of several inception modules, max-pooling layers, and four fully connected convolutional 

layers [371], [372]. Training is done using backpropagation, a standard softmax, and cross-

entropy loss with batch normalization. Dropout is placed on the fully connected layers to 

prevent excessive co–adapting and overfitting during training. Dropout refers to a technique 

of ignoring specific neurons response during a forward or backward pass after a time. Between 
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the last max-pooling layer and the first fully connected layer, the network has approximately 

4.6 million trained parameters. 

Through the network, several inception modules were used. The overall objective of 

the inception module is to overcome the dimensionality of the multiplier effect. An Inception 

module allows the use of several filters in a single module [372]. While this will make the 

network architecture broader and more complex, the process works remarkably well because 

of what it is the researchers are trying to achieve. 

The penultimate element of the 3dmFV network is a max-pooling layer. This layer 

reduces the dimensionality of the Inception module further. They work bypassing all output 

elements of the Inception module through an n×n filter. The n×n filter passes over the data 

with a fixed stride. Taking the first n×n region, the max value for that region is calculated 

before passing it on to the next. This process is repeated using the stride value to shift the max-

pooling filter over in increments, passing the filter over all elements of the data. 

The final component in the 3dmFV network is four fully connected layers. The output 

of the previous layers is flattened into a single vector of values. These represent a probability 

that a feature belongs to a specific class. For example, in HAR, when a person is running, the 

fully connected layers should identify features representing the action in a single frame with a 

high probability. 

5.4 Results and Discussion 

A modified FV representation network classifies the probable distribution of points 

around a spherical Gaussian. Concurrently the relationship between 3D points is accounted for 

in the probable distribution, and similarly in the modified FV representation. Other Point 

Cloud classifiers do not account for the relationship between points, but rather the location of 

points in space or as a volume. This is the reason a modified FV representation network for 

HAR was chosen. This chapter reports on the performance of the proposed framework and an 

alternative Point Cloud classifier – PointNet. Performance of the object detector network, 3D 

classification network, and PointNet classification networks were scrutinized using the 

LboroLdnHAR dataset. Using metrics such as average precision, recall, and F-score, the 

researcher evaluated whether the networks perform as desired and, therefore, suitable for HAR. 

At the end of this chapter, the visible results of the proposed framework were presented 

alongside discussions on some of the limitations and benefits of the network. 
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5.4.1 Dataset 

Existing HAR techniques using image data are sensitive to viewpoint variations. This 

is a consequence of extracting features from viewpoint dependent images. In contrast, the 

proposed framework mines 2D images to identify a 3D region in a Point Cloud scan. Since the 

proposed framework classifies viewpoint independent 3D data, this technique is completely 

insensitive to viewpoint variations, as long as the subject can be identified in the image. 

The proposed MfV Network was evaluated on the LboroLdnHAR dataset [279]. The 

LboroLdnHAR dataset consists of 6712-Point Cloud, RGB-D, and RGB annotated samples. 

The dataset was split into three subsets: RGB data for detection, RGB-D, and Point Cloud data 

for classification and one sample from each class for demonstration. The first subset contained 

RGB samples and consisted of images with annotated ground truth ROI labels. This subset 

was used to train and validate the 2D image detection network. The second subset contained 

annotated classes of aligned Kinect and LiDAR data. It was used to train and validate the Point 

Cloud classification network. The final subset was a small number of aligned and translated 

samples not used during the training or validating of the proposed network. This was utilized 

in the results section of this paper to demonstrate the ability of the proposed network. 

The LboroLdnHAR dataset contains data of typical human activities in indoor 

environments. Data was captured by three sensors – LiDAR, RGB-D, and RGB. The 9 

activities performed by 16 participants were chosen based on practical activities performed in 

an office environment. The activities were: carrying boxes, lying down, pushing a board, 

running, sitting on a chair, sitting on a stool, standing while texting, walking, and walking 

while texting.  

The focus was indoor activities where humans have a limited attention span, resulting 

in scenarios where it is highly likely that humans would not pay attention to an AV. The mean 

period for each data capture was approximately 35 seconds. Subjects started and ended the 

data capture periods with a T pose – standing upright with arms outstretched. During the 

experiments, the RGB 360° camera, RGB-D Kinect V2, and VLP–16 LiDAR sensor logged 

data at 30 fps, 30 fps, and 6 fps, respectively. 

5.4.2 MFV Net Performance 

Comparative evaluation describes a mechanism where the performance of the 

proposed process is evaluated in a comparative framework. It is not always clear how to do 

this, as what works for one system will not necessarily work for another. Typically in object 
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detection and classification tasks, the recall, mean average precision, and F-score are 

frequently used metrics to evaluate the benefits of one framework over another [352], [373], 

[374]. 

The average precision uses Precision and Recall for ranked retrieval results. The 

concept of recall and precision stems from the rate of change in the true positives and false-

positive results. Like the average precision, the F-score considers both the precision and the 

recall of the detector to determine the advantage of one system over another. These metrics 

were used to identify the benefits of the detection network and the optimal Point Cloud 

classification network for HAR. 

A. 2D Detection Network Performance 

The detector was trained and evaluated on the first subset of the LboroLdnHAR 

dataset [279]. To measure the detector's performance, the research focused on the average 

precision, shown in Figure 55, the log–average miss rates, shown in Figure 56, and the F-score 

detailed in Table 17. 

TABLE 17: 2D DETECTION NETWORK PERFORMANCE  

Evaluation Method Person 

Precision 0.95 

Recall 0.96 

Log-Average Miss Rate 0.1 

F-Score 0.95 

The average precision is a method of evaluation that incorporates the ability of the 

detector to make correct classifications, i.e., precision, and the ability of the detector to find 

all relevant objects, i.e., recall. The log–average miss rate was attained by varying the 

thresholds on the detector confidence prediction and by measuring the rate of change in the 

true and false positives. The log–average miss rate returns the results of the Object Detector 

compared to the ground truth table. This metric is another method of measuring the 

performance of the Object Detector [375], [376]. In this case, the research found that the 

average precision and log–average miss rate for the detector was 0.95 and 0.1, respectively. 

The F-score considers both the precision and the recall of the detector. Using binary 

classification, which separates two elements of a dataset into distinct groups, in conjunction 

with the F-score, allows the accuracy of the framework to be determined [377]. Defined as 

two times the precision times the recall over the precision plus the recall. The F-score reaches 

its best value at 1 and worst at 0. For the object detector portion of the framework, the F-score, 

reported in Table 10, was determined as 0.95.  
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Figure 55: The average precision of the object detector portion of the proposed framework showing the trade-off between precision 
and recall. A high area under the curve represents both high recall and high precision – as we can see here 

 

 
Figure 56: The log–average miss rate of the object detector portion of the proposed framework indicating the quality of detection 
of the object detector. 
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B. 3D Classification Network Performance 

Table 11 reports on the average score for each class of 3DmFV-Net when tested with 

the LboroLdnHAR dataset [279]. To measure the classifier 's performance, we focused on the 

precision, recall, and the F-score of each class. When scrutinizing the performance, for the 

most part, it was found that the higher the instances of each class, the more significant the F-

score per class. 

TABLE 18: 3D CLASSIFICATION NETWORK PERFORMANCE 

 
Carrying 

Boxes 
Lying 

Down 

Pushing 

A 

Board 
Running 

Sitting 

On A 

Chair 

Sitting 

On A 

Stool 

Standing 

While 

Texting 
Walking 

Walking While 

Texting 

Precision 1 1 0.988 0.726 0.881 0.968 0.9134 0.722 0.864 

Recall 0.959 1 1 0.688 0.890 0.957 0.989 0.776 0.795 

F-score 0.979 1 0.994 0.706 0.885 0.962 0.95 0.748 0.828 

Sample 74 103 86 77 100 95 96 67 88 

Figure 57 shows the confusion matrix for the classifier. On the Y-axis are the Output 

Class, and on the X-axis are the Target Class. The diagonal cells, dividing either side of the 

matrix, indicate true positives that are correctly classified. The off-diagonal cells indicate false 

positives that are incorrectly classified. The overall accuracy for the classifier was 0.903. The 

Precision and Recall were 0.895 and 0.894, respectively.  

Of all the activities, the 3D classification network had the greatest difficulty in 

identifying the class titled Running, and the greatest success in identifying the classes titled 

Sitting On A Chair and Laying Down, respectively. Unsurprisingly, Running was 

misclassified as the class titled Walking 14 times, thus reducing the Walking class accuracy 

and that of the overall network. Similarly, the class titled Walking While Texting was 

misclassified as the classes titled Walking and Running a total of 6 and 10 times, respectively. 

It can be assumed that the reason for the miss classification is because of the similarities 

between the human silhouette. It should be noted, that while the network had difficulties in 

identifying some of the classes that shared similarities between silhouette, it still performed 

exceptionally. In fact, 5 of the activities (Carrying Boxes, Laying Down, Pushing A Board, 

Sitting On A Stool, Standing While Texting) were classified with an accuracy over 90%, 2 

activities (Sitting On A Chair, Walking While Texting) were classified with an accuracy over 

80% and the remaining 2 activities (Running, Walking) were classified with an accuracy over 

70%. 



MULTIMODAL MACHINE LEARNING FOR INTELLIGENT MOBILITY 128 

128 

 
Figure 57: Confusion matrix for the 3D classifier portion of the proposed framework. The diagonal cells indicate true positives 
correctly classified. The off-diagonal cells indicate false positives that are incorrectly classified. 

5.4.3 PointNet Classification Network Performance 

To benchmark, the performance of the proposed method, PointNet was trained and 

tested with the LboroLdnHAR dataset [279]. Table 19 reports on the average score for each 

class from PointNet. As with the performance of the 3D Classification Network, we focused 

on the precision, recall, and F-score of each class. It should be noted that the same process for 

determining the ROI was used to identify the corresponding 3D ROI. This data was fed into 

PointNet, and a prediction was made. The same split of the data was used for both classification 

methods. 

Figure 58 shows the confusion matrix for PointNet. On the Y-axis are the Output Class, 

and on the X-axis are the Target Class. The overall accuracy for the classifier was 0.098. The 

Precision and Recall were 0.111 and 0.147, respectively. Of interest was the network's inability 

to classify subjects lying down, sitting on a chair, and sitting on a stool. While the network 

was able to make a prediction, it performed extremely poorly when compared to the 3D 
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classification network discussed in the previous section, so much so that it was deemed 

unusable for HAR. 

TABLE 19: POINTNET CLASSIFICATION NETWORK PERFORMANCE 

 
Carrying 

Boxes 
Lying 

Down 

Pushing 

A 

Board 
Running 

Sitting 

On A 

Chair 

Sitting 

On A 

Stool 

Standing 

While 

Texting 
Walking 

Walking While 

Texting 

Precision 0.013 0.057 0.87 0 0.059 0 0 0 0 

Recall 0.019 0.714 0.11 0 0.038 0 NaN NaN NaN 

F-score 0.016 0.106 0.20 0 0.046 0 0 0 0 

Sample 74 103 86 77 100 95 96 67 88 

 

 
Figure 58: Confusion matrix for PointNet. The diagonal cells indicate true positives correctly classified. The off-diagonal cells 
indicate false positives that are incorrectly classified. 

5.4.4 Visual Results 

The purpose of the proposed algorithm is to assist an AV with HAR. The results 

displayed here were a subset taken from the LboroLdnHAR dataset but not used during 

training or validation of the network [279]. Samples from the LboroLdnHAR dataset [279] 
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were captured while the AV was stationary. All samples in the LboroLdnHAR dataset [279] 

were performed indoor under controlled lighting. The results presented in Figure 59 Scenario 

1 (c), Scenario 2 (c), Scenario 3 (c), and Scenario 4 (c) indicate that the proposed MfV Net 

performed as desired. In all cases, the subject preforming the activity was detected, segmented, 

and classified correctly. The output image in Figure 59 Scenario 1 (c), Scenario 2 (c), Scenario 

3 (c), and Scenario 4 (c) depicts the fused results of the different feature learning networks. In 

line with the five core technical challenges – Representation, Translation, Alignment, Fusion, 

and Co-Learning – this research shows how Multimodal ML can be successfully applied to 

HAR. 

In Figure 59 Scenario 1 (a), the image shows a subject carrying a box. The first part 

of the proposed framework, the Object Detector, identifies, with a high degree of confidence 

(99%), the location and region the person occupies. Figure 59 Scenario 1 (b) shows the 3D 

ROI identified by the Object Detector. Although there are unwanted artefacts located in the 

3D ROI, the activity being performed by the subject is correctly classified, as shown in Figure 

59 Scenario 1 (c).  

In Figure 59 Scenario 1 (a), there is a person in the background. In this case, the Object 

Detector did not function as desired. This can be attributed to the design of the Faster-R-CNN 

network, where input images with an aspect ratio of 360 × 360 are reduced in size before 

processed. When processing images, the Faster-R-CNN extracts features within the first few 

layers. When dealing with small objects in small images, the feature can, in effect, disappear 

in the middle of the network. In this case, the person in the background is not detected, and 

therefore, their activity is never classified in the latter part of the network. Table 20 details the 

scenarios depicted in Figure 59.  

Similar but somewhat different issues occur in Figure 59, Scenario 2 (a). In this image, 

the subject is standing while texting. The Object Detector correctly identifies the ROI for the 

subject but misses the person behind the computer due to occlusion. Contrary to this, the 

subject of interest was detected correctly, and the corresponding 3D ROI was extracted from 

the 3D data. Of interest is Figure 59, Scenario 2 (b). In this image, the subject is standing 

upright with their hands in front clasping a phone. This ROI is passed onto the classifier 

component of the proposed network before the correct result is overlaid onto the image shown 

in Figure 59 Scenario 2 (c). 
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 IMAGE WITH ROI IDENTIFIED 

BY THE OBJECT DETECTOR (A) 
3D ROI SEGMENTED FROM POINT 

CLOUD DATA (B) 
IMAGE WITH DETECTED ROI AND 

HUMAN ACTIVITY CLASSIFIED (C) 

Figure 59: A subset of the data used to assess the visual performance of the proposed MfV Net. From the top: Scenario 1, Scenario 
2, Scenario 3 and Scenario 4. Table 19 details the scenarios depicted in Figure 59. Images in the first column indicate the output 
of the Object Detector. The centre column shows the segmented Point Cloud data. The final column shows the output of the 
network and the associated class identified for the activity being performed. 
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The phone in Figure 59, Scenario 2 (b), occupies 19 3D points. Conversely, the person 

sitting in the background in Figure 59 Scenario 1 (a) occupies 79 pixels. Given that the object 

detection failed to identify the person occupying 79 pixels infers that the Point Cloud classifier 

is better at identifying features regardless of proximity to the sensor. 

TABLE 20: SCENARIO DETAILS DEPICTED IN FIGURE 59 

 Images 

Row 1 Scenario 1: Showing the subject carrying a box. 

Row 2 Scenario 2: Showing the subject standing while texting. 

Row 3 Scenario 3: Showing the subject of walking while texting 

Row 4 Scenario 4: Sowing the subject lying down. 

Figure 59 Scenario 3 (a) shows a subject walking while texting. In this image, the 

subject was identified with 98% confidence. The corresponding 3D ROI was segmented using 

the ROI identified by the Object Detector is shown in Figure 59 Scenario 3 (b). As in Figure 

59 Scenario 2, (b), the subject in this image has their hands out front clasping a phone. This 

ROI was passed onto the classifier component before the correct result overlay onto the image 

shown in Figure 59 Scenario 3 (c). 

Figure 59, Scenario 4 (a) shows a subject lying down. In this image, the area occupied 

by the subject, and some of the couch, was identified with 97% confidence. Figure 59 Scenario 

4 (b) shows the 3D ROI identified by the Object Detector. In this image, the ROI contains a 

partial Point Cloud of the subject and a portion of the couch the subject was lying on. When 

passed onto the classifier, the correct result was overlaid onto the image. Much like Figure 59 

Scenario 1, where the subject was carrying a box, the object the subject is performing the 

activity with, is incorporated into the classification processes. 

5.4.5 Limitations & Comparison 

Figure 59 presented four scenarios displaying the output of the different sections of 

the MfV Net for HAR. These images saw the case of non-occluded subjects performing certain 

activities. In each case, the model outputs remarkably accurate results. Also, this research 

found that the MfV Net can make a correct prediction from partial data with few points. 

For example, in Figure 59, Scenario 4 (b), the subject is in the supine position on a 

couch. The lack of Point Cloud data cannot be attributed to the instrument, but a principle of 

operation of the sensor. Note the horizontal planes contacted by a laser – the further away, the 

more significant the gap between planes. In this case, points on the subject contacted by the 

laser are reduced to a single plane, making it difficult to classify. Moreover, given the obscurity 
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and the absence of data points, humans trying to annotate the same data would find this a 

difficult task. 

Notwithstanding the successes, this research observes a few failure patterns of the 

proposed framework. The primary and most pronounced issue occurs with the frame rate of 

the LiDAR (5 HZ). While it is possible to increase the frame rate, doing so reduces the number 

of points captured during a single frame. Although the proposed MfV Net has shown resilience 

to frugal data captures, there is a point where the network will misclassify. Conversely, it is 

possible to reduce the frame rate below 5Hz and thus increase the data captured in a single 

frame. Doing so results in temporal ghosting of subjects moving at speed. In this case, the 

aligned RGB, Point Cloud, and RGB-D data would fall out of alignment, causing issues in the 

proposed pipeline. Although this issue is partially mitigated using redundant sensors, the issue 

is best managed by carefully selecting the frame rate of the sensors. 

Another issue encountered was the false positives and negatives identified by the 

network. As commented in the results section, Figure 59 Scenario 1 (a) showed a subject 

performing the task and a person sitting on the couch. In this Scenario, the Object Detector 

misses the person on the couch but identified the subject of interest. This issue was attributed 

to the distance the subject was from the RGB sensor. It is believed that this issue can be 

overcome by using sensors with a high-resolution image patch for far-away objects. 

In terms of comparison to other networks and their suitability for Point Cloud learning, 

we looked at [2], [346], [362]. Researchers in [362] converted the Point Cloud data to a voxel 

grid array. How the CNN acts on a voxel is dependent on the size of the grid – course or a fine. 

Applying HAR choosing a coarse grid leads to quantization and a substantial loss of 

information, whereas a fine grid increases the computational cost. Both result in trade-offs 

depending on the approach and, therefore, are not suitable for classifying human activity. 

Point Net, another approach to classification, directly consumes unordered Point 

Clouds [2], [346]. The Point Net approach applies a symmetric function to n variables whose 

value given n arguments is the same. This refers to the fact that the model does not assume 

any spatial relationships between features. This is not the case for HAR, which assumes 

neighbourhood relations between the location of different points. Consequently, PointNet 

performs poorly when classifying HAR, regardless of how well it performs on classifying 

objects. 
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5.5 Summary 

The objectives of this research work are to segment and classify human activity from 

Point Cloud data using an ROI extracted from an RGB image. Traditional methods of HAR 

utilize RGB images and wearable sensors attached to the subjects. In this paper, we proposed 

a MfV Net for HAR. The network is composed of an Object Detector and a 3D classification 

network. The Object Detector utilizes a Faster–R-CNN to identify an ROI containing a person 

performing an activity. Translation and alignment of data types allow for the segmentation of 

the Point Cloud data. The corresponding 3D ROI is converted to a modified Fisher Vector 

representation before a CNN classifies the activity. 

The proposed framework utilizes RGB images, and Point Cloud data acquired from 

sensors that are commonly used in Intelligent mobility. The benefit of such a system over 

others is that it removes the need for wearable sensors and provides a reliable and accurate 

method of HAR. The main challenges to the proposed framework lie with accurate alignment 

and translation of the different sensor modalities. A further challenge is the sensor frequency 

of operation, and this plays an integral role in perceiving the correct presence of subjects. 

The object detection portion of the proposed framework accurately identified the 

presence of the subject in an image with an average precision of 95% and a log–average miss 

rate for 0.1, respectively. The classification portion of the proposed framework accurately 

classified the activities performed by the subject with 90.3%. The Precision and Recall were 

89.5% and 89.4%, respectively. 

The implication of this research is a machine that can better recognize human activities 

being performed in both indoor and outdoor environments. Indirectly this research assist 

machines in deriving data-driven driver policy, recognize when the elderly suffer a fall and 

holds the potential to advance human-computer interaction to a new level of understanding. 

Preforming HAR using sensors that are common to AVs removes the need for 

wearable sensors and provides valuable context information to machines so they can make 

better decisions. Furthermore, classifying point cloud data in this manner allows a machine to 

understand the crucial relationships between a system of rigid segments, connected by 

articulated joints, the way humans do. This is not the case for other Point Cloud classifiers, 

where spatial relationships between features are disregarded, thus allowing the proposed 

framework to achieve state-of-the-art results. 
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Chapter 6 Conclusion 

6.1 Introduction 

The objective of this thesis is to contribute to the literature in the field of AV 

technology and to aid the future of intelligent mobility. While most research for driverless 

vehicular technology has focused on structured environments such as highways. Visions of 

intelligent mobility aspire beyond structured environments and seek to assist humans in indoor 

as well as pedestrianized areas such as pavements. When developing intelligent algorithms for 

AVs, indoor and pedestrianized areas pose different challenges to structured environments like 

highways. This is because unstructured environments are diverse, constantly changing, and 

are normally populated by humans. This thesis aimed to address this gap in AVs research. 

Motivated by recent developments in deep learning, this thesis focused on investigating data-

driven algorithms for intelligent mobility. Within this context, the overall hypothesis of this 

research was that “it is possible to make autonomous systems safer and more Intelligent with 

algorithms that are capable of adapting to new environments by leveraging multiple 

heterogeneous data streams to make robust decisions”.  

Towards investigating this hypothesis, this thesis set out the following research 

objectives: 

 To develop a data collection mechanism to investigate a wide spectrum 

of environments that are to be catered by Intelligent mobility 

applications, such as indoor spaces and pedestrianized areas. 
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 To explore ML algorithms that are capable of adapting to new 

environments and data streams with little or no training. 

 To investigate methods of leveraging multiple heterogeneous data 

streams (Multimodal data streams) to make robust decisions in safety-

critical autonomous systems. 

To achieve the objectives, multiple contributions, specifically focused on the AV 

technology with applications to intelligent mobility, were developed. The contributions of this 

thesis are as follows 

1. Throughout the course of this research and in the quest to prove the 

research hypothesis, many data sets were reviewed – they were deemed 

unsuitable for the project’s requirements. Therefore, a means of 

collecting specific data was needed. The first contribution of this thesis 

is to develop an autonomous platform as an open-source experimental 

framework for data gathering, sharing, and experimental validation for 

driverless vehicle technology. 

2. Using the platform developed two novel Multimodal data sets are 

collected for data-driven algorithm development and experimental 

validation. Firstly, the LboroLdnAV Dataset is a dataset gathered from 

unstructured indoor and pedestrianized outdoor environments, 

annotated with 7 object classes collected using seven different 

perception sensors. Secondly, the Loughborough London HAR Dataset 

is a multimodal open-source dataset collected indoors, using three 

different sensors and annotated with 9 classes of human activity. 

3. A self-evolving FSD algorithm is developed, which leverages the 

relative uncertainty of different sensors as a utility to automatically label 

new data (active learning) and re-learn the data-driven model whenever 

new data streams are encountered (online learning). 

4. Knowing what human agents are doing in their environment is crucial 

for safe decision-making in AVs. A Multimodal Fisher Vector Network, 

which is a type of deep convolutional neural network, is proposed as a 

new methodology for the classification of different human activities 
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leveraging both RGB camera data and the Point Cloud data that are 

gathered from LiDAR sensor. 

The work developed throughout this research has shown that a self-evolving semi-

supervised ML algorithm can detect free space. It has also shown that point cloud data can be 

used to recognize the human activity. They were developed using an open-source experimental 

autonomous platform that enabled the collection of specific multimodal sensor data. 

6.2 Contributions 

6.2.1 Architecture for an Intelligent Mobile Robot 

A scalable, multi-layer context mapping and recognition system were presented earlier 

in this thesis. The architecture has four layers: The Sensing Layer, The Data Analysis Layer, 

a Multi-layered Context Representation, and The Application Layer. The autonomous 

platform roams and collects data with the possibility of human intervention.  

The experimental autonomous platform produced a tangible output of two datasets – 

LboroLdnAV & LboroLdnHAR – for AV and HAR, respectively. The development of the 

datasets is an ongoing project in Loughborough University, London, and additional releases 

will follow.  

Data collected by the autonomous platform was used to construct two different 

datasets. The LboroLdnAV dataset consists of 45.6 hours of Video, LiDAR, and ultrasound 

data collected over 1.2 km, displaying a variety of scenarios from both indoor and outdoor 

environments. In total, there were approximately 2.5 million frames captured by four cameras 

– 672k frames captured by the 360Fly Wide-angled camera, 1.2 million frames captured by 

the Ricoh Theta V 360° camera, and 624k frames captured by the two Wansview IP cameras. 

Both the LiDAR and ultrasonic sensor array captured a total of 252k and 220k scans, 

respectively.  

The LboroLdnHAR dataset consists of 6712 annotated, aligned, and transformed 

LiDAR, RGB–D, and RGB samples – 5916 for training, 787 for validation, and 9 for 

demonstration. The dataset was split into three subsets. The first subsets contained RGB 

samples and consisted of images with annotated ground truth ROI labels, indicating the 

location of people in the frame. The LiDAR and RGB–D samples were aligned transformed 

and annotated, indicating the activity being performed by the subjects.  
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Two algorithms we reported on in this thesis – online active Learning for FSD and an 

MfV Net for HAR. An autonomous platform used to collect two datasets facilitated their 

development. 

6.2.2 A Self Evolving Free Space Detection Model 

Chapter 4 reports on a framework using online active ML for FSD. The proposed 

framework queries new image data against ranges before fusing the results with the ultrasonic 

sensor data to make more robust and reliable decisions. Experiments compared four different 

methods for identifying free space. As the results demonstrate, the proposed framework returns 

a superior result to the alternative methods. Preforming Free Space Detection in this manner 

allows for the algorithm to self-learn, evolve and adapt to new environments never 

encountered before. While it is possible to use alternative techniques such as DeepLabv3+ to 

identify free space, they require large datasets and have difficulty generalising to unfamiliar 

surroundings. This was demonstrated where all alternative cases of examined underperformed 

when compared against the proposed framework of online active Learning with sensor data 

Fusion. 

6.2.3 A Multimodal Fisher Vector Network for Human Activity 

Recognition 

Chapter 5 reports on the MfV network for HAR. The proposed framework utilizes 

RGB images, and Point Cloud Data acquired from sensors that are commonly used in 

intelligent mobility. The MfV network segments and classifies human activity from the point 

cloud data using an ROI obtained from an RGB image. The ROI is identified using a Faster 

R-CNN object detector. Translation and alignment of data types allow for the segmentation of 

the point cloud data. The corresponding 3D ROI is converted to a modified FV representation 

before a CNN classifies the activity. The object detection portion of the proposed framework 

identifies the presence of the subject in an image with an average precision of 95%. The 

classification portion of the proposed framework accurately classified the activities performed 

by the subject with an average precision of 90.3%.  

6.3 Benefits and Implications of this Research 

In this research, we have sought to replicate some of the skills humans frequently rely. 

Our main aim of this research was to address issues relating to intelligent mobility. Specifically, 

we focused on the most basic perception skills, FSD, and higher cognitive skill HAR.  
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The FSD framework proposed in this research is self-learning and self-evolving 

algorithm. The framework utilizes online active learning and sensor data Fusion to adapt to 

scenarios never encountered before. Because of the structure of the proposed framework, it is 

better able to generalize than the current state of the art in FSD and requires little data to start 

the process. Moreover, as the algorithm encounters new terrains, it becomes better at 

traversable space.  

The HAR framework proposed in this research merges two ML algorithms to perform 

a task that is largely elusive when using optical data alone or requires the use of ubiquitous 

wearable sensors. Optical data is susceptible to varying lighting conditions, and ubiquitous 

wearable sensors are impractical in real-world scenarios. Since LiDAR sensors are 

commonplace in most AV, having a system that can classify human activity using point cloud 

data is of the utmost importance. 

The implications of this research are autonomous systems that can function safely in 

both structured and unstructured, dynamic environments. Increasingly complex automated 

driving functions require more accurate environment models ever. If the relevant information 

is missing, mobile agent control can contribute to safety risks. Robust and reliable methods of 

FSD and HAR ensure that relevant information is not missing when a mobile agent needs to 

make data decision. They will enrich the context information on the Data Analysis Layer, and 

Multi-layered Context Representation all while contributing towards systems that more closely 

resemble human ability  

6.4 Future Work 

Jean Piaget was an educator and psychologist during the early to mid-1900s. A lot of 

his work centred on how humans developed an understanding of objects [359]. He thought 

how humans develop over time – through the construction of a schema, the assimilation and 

accommodation of new information – and during the different stages of our cognitive 

development, can have a profound and fulfilling understanding of the world. If understanding 

the world is a consequence of these components, then relationship reasoning is integral to 

human cognitive development. In fact, learning to detect the relationship between objects is 

something humans have been doing since birth. Understanding relationships is so omnipresent 

to our learning that we hardly recognize it happening at all. Currently, humans understand very 

little about the methods that allow us to distinguish spatial and temporal relations between 

objects and how they evolve. From a machine learning perspective, relational reasoning is an 
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elusive goal. While there is some research into relationship reasoning, this field of study is 

mostly unknown.  

Relationship reasoning enables machines to understand the implicit connections 

between different things. For example, consider the following statement: “All employees 

finish work at five. John is an employee.” In this case, the relational is that John finishes work 

at 5, but this was never explicitly stated. We can understand from the statement that there is a 

relationship between John and employees. By and large, this understanding does not come so 

easy to machines. While it is possible to encode an understanding between information types 

or the individual data points in data capture, understanding this relationship is a different thing.  

Never more prevalent than in detection and classification tasks. While there are many 

schools of thought as to how humans achieve this, there is one that accounts for the 

construction of a schema, the assimilation and accommodation of new information. Titled 

Recognition by Component, this theory of perception was conceived in 1987 by Irving 

Biederman. Geometric based Recognition uses pre-defined metrics and some knowledge about 

the subject before deciding on the objects perceived. To function, effectively Recognition by 

Component requires an image to be segmented at regions of deep concavity. This allows an 

image to be broken into an arrangement of simple geometric components - cubes, cylinders, 

prisms, etc. The theory, first proposed in 1987 by Irving Biederman, makes the fundamental 

assumption that humans segment objects of any form into 36 generalized components, called 

primitives [378]. 

For true identification, the position of the primitive is the key relationship between 

perceptual order and object recognition. This enables humans to reliably perceive an image at 

an obscure angle and still understand what is being observed [378]. If the image can be viewed 

from any orientation, the projection at that time can be regarded as two-dimensional. Objects; 

therefore, do not need to be presented as a whole but can be represented as a series of simplified 

shapes, even if some parts are occluded [379], [380]. 

In addition to filling in the blanks for occluded sections of an object, humans are 

excellent at trying to make sense of the unknown. For example, when presented with 

unfamiliar objects, humans easily recognize the primitives of which the image is composed, 

even if the overall image is not recognized [379], [380]. Biederman and others believed that 

humans perform this process regularly [378], [380], [381]. Therefore, humans rely on what the 

image is composed of rather than the familiarity of the image as a whole. This is a 

representational system that identifies elements of complex images to assist in human 
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understanding and development [378]. The phenomenon of recognition by component allows 

humans to rapidly identify objects from obscure scenes, at peculiar angles and under noisy 

conditions. Deep concavities between primitives are identified using the surface characteristics 

of the overlapping parts. Non-accidental properties - shapes that look alike from certain angles 

- are distinguished by co-linearity and symmetry of the primitive being observed [382]. Co-

linearity and symmetry play a vital role in identifying components, as does the orientation of 

the components. For example, a triangle on top of a square bears a striking resemblance to a 

house, whereas a square on a triangle makes little sense – the components need to match the 

representation of the memory both in shape and orientation. With the exception of the 

relationship between adjoining components, identifying the primitives that construct and 

image, is not a particularly challenging task. If possible, to encode relationship reasoning into 

an algortherm so that it can make sense of the order and proximity of components, 

classification using Biederman’s recognition by component should return perception skills 

akin to that of a human.  

This research has shown how a relationship between data types or individual data 

points can work to the benefit of a classification task. For example, the relationship between 

ultrasound and camera data can be used to classify free space. While a relationship between 

the proximity of data points in point cloud data facilitates the recognition of an activity being 

performed by the subject. While the frameworks reported are not precisely relationship 

reasoning, they show how connections allow ML algorithms to understand abstract links 

between different things. With further research, a relation network should easily attain 

relational reasoning capabilities and bring us a step closer to AGI. 
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Appendix A: LboroLdnAV Dataset Sample 

 
Figure 60: Montage of 48 traversals of the same location on 22nd May 2018, illustrating the diverse range of images, short-term 
lighting and weather changes encountered by the testbed when collecting the LboroLdnAV dataset. 
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Appendix B: LboroLdnHAR Dataset Sample 

 
Figure 61: Montage of 48 scenarios performed by different subjects captured on 17th June 2018 and 18th June 2018, illustrating 
the diverse range of activities in the LboroLdn HAR dataset. 
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Appendix C: Technical Drawings 

Figure 62: Isometric View of the Autonomous Platform showing the quad bike chassis, electronic rack, ultrasonic array, steering 
assembly and MSI laptop. 
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Figure 63: Shows the ultrasonic sensor array. Top left showing side elevation. Top right showing the isometric view. Bottom Left 
showing plan view. Bottom right front elevation. 



MULTIMODAL MACHINE LEARNING FOR INTELLIGENT MOBILITY 146 

146 

 
Figure 64: Shows the Steering assembly. Top left showing side elevation. Top right showing the isometric view. Bottom Left 
showing plan view. Bottom right front elevation.  
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Figure 65: Shows the Power Electric Rack. Top left showing side elevation. Top right showing the isometric view. Bottom Left 
showing plan view. Bottom right front elevation. 
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